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Preface

Statistical field theory deals with the behavior of classical or quantum systems con-
sisting of an enormous number of degrees of freedom in and out of equilibrium.
Quantum field theory provides a theoretical framework for constructing quantum
mechanical models of systems with an infinite number of degrees of freedom. It is
the natural language of particle physics and condensed matter physics. In the past
decades the powerful methods in statistical physics and Euclidean quantum field
theory have come closer and closer, with common tools based on the use of path
integrals. The interpretation of Euclidean field theories as particular systems of sta-
tistical physics opened up new avenues to understand strongly coupled quantum
systems or quantum field theories at zero or finite temperature. The powerful meth-
ods of statistical physics and stochastics can be applied to study for example the
vacuum sector, effective action, thermodynamic potentials, correlation functions, fi-
nite size effects, nature of phase transitions or critical behavior of quantum systems.

The first chapters of this book contain a self contained introduction to path in-
tegrals in Euclidean quantum mechanics and statistical mechanics. The resulting
high-dimensional integrals can be estimated with the help of Monte Carlo simula-
tions based on Markov processes. The method is first introduced and then applied to
ordinary integrals and to quantum mechanical systems. Thereby the most commonly
used algorithms are explained in detail. Equipped with theses stochastic methods we
may use high performance computers as an “experimental” tool for a new brand of
theoretical physics.

The book contains several chapters devoted to an introduction into simple lattice
field theories and a variety of spin systems with discrete and continuous spins. An
ideal guide to the fascinating area of phase transitions is provided by the ubiquitous
Ising model. Despite its simplicity the model is often used to illustrate the key fea-
tures of statistical systems and the methods available to understand these features.
The Ising model has always played an important role in statistical physics, both at
pedagogical and methodological levels. Almost all chapters in the middle part of
the book begin with introducing methods, approximations, expansions or rigorous
results by first considering the Ising model. In a next step we generalize from the
Ising model to other lattice systems, for example Potts models, O(N) models, scalar
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viii Preface

field theories, gauge theories, and fermionic theories. For spin models and field the-
ories on a lattice it is often possible to derive rigorous results or bounds. Important
examples are the bounds provided by the mean field approximation, inequalities be-
tween correlation functions of ferromagnetic systems, and the proofs that there exist
spontaneously broken phases at low temperature or the duality transformations for
Abelian models which relate the weak coupling and strong coupling regions or the
low temperature and high temperature phases. All these interesting results are de-
rived and discussed with great care.

As an alternative to the lattice formulation of quantum field theories one may use
a variant of the flexible renormalization group methods. For example, implementing
(spacetime) symmetries is not so much an issue for a functional renormalization
group method as it sometimes is for a lattice regularization and hence the method is
somehow complementary to the ab initio lattice approach. In cases where a lattice
regularization based on a positive Boltzmann factor fails, for example for gauge
theories at finite density, the functional method may work. Thus it is often a good
strategy to consider both methods when it comes to properties of strongly coupled
systems under extreme conditions. Knowledge of the renormalization group method
and in particular the flow of scale dependent functionals from the microscopic to the
macroscopic world is a key part of modern physics and thus we have devoted two
chapters to this method.

According to present day knowledge all fundamental interactions in nature are
described by gauge theories. Gauge theories can be formulated on a finite spacetime
lattice without spoiling the important local gauge invariance. Thereby the functional
integral turns into a finite-dimensional integral which can be handled by stochastic
means. Problems arise when one considers gauge fields in interaction with fermions
at finite temperature and non-zero baryon density. A lot of efforts have gone into
solving or at least circumventing these problems to simulate quantum chromody-
namics, the microscopic gauge theory underlying the strong interaction between
quarks and gluons. The last chapters of the book deal with gauge theories without
and with matter.

This book is based on an elaboration of lecture notes of the course Quantum Field
Theory II given by the author at the Friedrich-Schiller-University Jena. It is designed
for advanced undergraduate and beginning graduate students in physics and applied
mathematics. For this reason, its style is greatly pedagogical; it assumes only some
basics of mathematics, statistical physics, and quantum field theory. But the book
contains some more sophisticated concepts which may be useful to researchers in
the field as well. Although many textbooks on statistic physics and quantum field
theory are already available, they largely differ in contents from the present book.
Beginning with the path integral in quantum mechanics and with numerical meth-
ods to calculate ordinary integrals we bridge the gap to lattice gauge theories with
dynamical fermions. Each chapter ends with some problems which should be useful
for a better understanding of the material presented in the main text. At the end of
many chapters you also find listings of computer programs, either written in C or in
the freely available Matlab-clone Octave. Not only because of the restricted size of
the book I did not want to include lengthy simulation programs for gauge theories.
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Chapter 1
Introduction

A quantum field theory (QFT) is an extension of the principles of quantum mechan-
ics to fields based on the wave properties of matter. It is generally accepted that QFT
is an appropriate framework for describing the interaction between infinitely many
degrees of freedom. It is the natural language of particle physics and condensed
matter physics with applications ranging from the Standard Model of elementary
particles and their interactions to the description of critical phenomena and phase
transitions, such as in the theory of superconductivity.

A relativistic quantum field theory unifies the basic principles of quantum theory
and special relativity in a consistent manner. The quantization of the electromag-
netic field was outlined by M. BORN and P. JORDAN back in 1925 [1] and just a
year later with HEISENBERG they showed how to quantize general systems with
an infinite number of degrees of freedom [2]. The theory was further developed
and applied to the photon–atom interactions by P. DIRAC who studied the quan-
tized photon field in interaction with atoms and calculated emission and absorption
rates [3]. In a next step P. JORDAN, W. PAULI and W. HEISENBERG [4–6] com-
pleted the quantization of electrodynamics, compatible with special relativity. This
was achieved by quantizing the Dirac and Maxwell fields in interaction. In particu-
lar, Heisenberg and Pauli emphasized the importance of the Lagrangian formulation
in field theory and developed the quantization procedure which nowadays is called
canonical quantization. To this day, their approach to QFT remains a popular one
and is presented in textbooks.

In a perturbative approach one first quantizes the non-interacting field and sub-
sequently includes the interaction by a local interaction density. The direct appli-
cation of this method leads to divergent expressions for physical quantities, e.g.
an infinitely large self-energy. The solution of this problem has led to the renor-
malization method which originated in the early work and has been completed by
TOMONAGA, SCHWINGER, FEYNMAN and DYSON. The latter outlined a proof
of renormalizablity of QED [7], which was complemented by other authors in the
1950s and 1960s. For a renormalizable QFT there exists a method consisting of a
regularization and subsequent renormalization that gives finite and physically sen-
sible results by absorbing the divergences into redefinitions of only a few coupling
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constants and the field. QED is the most studied and successful prototype of a renor-
malizable quantum field theory with a (local) gauge symmetry. The high precision
of QED-calculations is based upon the applicability of perturbation theory, where
the dimensionless fine-structure constant α ∼ 1/137 serves as expansion parameter.
The following years were dedicated to the formal improvement of field theory in
general. The connection between spin and statistics was found, the CPT-theorem
was formulated, the representation theory of the (anti)commutation rules was de-
veloped, the Euclidean formulation of QFT’ was investigated [8, 9] and symmetry
principles came to the fore.

An exciting period followed which began with the advent of non-Abelian gauge
theories, formulated by YANG and MILLS to extend the concept of a local gauge
symmetry from Abelian groups to non-Abelian groups [10], in order to describe the
interactions between elementary particles. The efforts culminated in the model of
S. GLASHOW, S. WEINBERG and A. SALAM [11–13] for the electro-weak interac-
tion. In particular after G. ’T HOOFT proved the renormalizability of spontaneously
broken gauge theories [14]—the weak interaction is described by such a theory—
the interest in Yang–Mills theories continued to increase. Shortly after these de-
velopments it became clear that the forces between strongly interacting particles
is described by yet another non-Abelian gauge theory, namely quantum chromody-
namics (QCD) [15]. However, it is not easy to compare QCD with experiment. This
is not only because the coupling is strong and not weak as in electrodynamics, but
also because of the related fact that the fundamental constituents of the theory, the
quarks and force-carrying gluons have never been seen directly, and are generally
believed to be unattainable because of the phenomenon of confinement. To prove
confinement or related properties as chiral symmetry breaking in strongly coupled
field theories we must leave the realm of perturbation theory.

New insights into the renormalization procedure beyond perturbation theory are
obtained with the path integral quantization of physical systems [16]. After a rota-
tion of time to imaginary values one obtains the Euclidean functional integral formu-
lation of QFT. The integrand contains the exponential of the negative action of the
classical field theory. When one approximates the continuous (Euclidean) space-
time by a finite lattice the functional integral of a QFT turns into a well-defined
finite dimensional integral. This means that the discretization regularizes the QFT
without reference to perturbation theory. In a second step one may renormalize the
theory by performing the continuum limit in which the lattice spacing tends to zero.
Equally important, the finite dimensional integral is an ensemble average in classi-
cal equilibrium statistical mechanics. Thereby the classical action of the field theory
discretized on a spacetime lattice becomes the energy function of a particular clas-
sical spin model. This far-reaching observation bridges the gap between two appar-
ently unrelated branches of physics: quantum (field) theory and classical statistical
physics. Actually, any QFT at finite temperature is described by an Euclidean func-
tional integral on a cylinder with the imaginary time as periodic variable. It follows
that after discretization the functional integral for the finite temperature QFT turns
into an ensemble average of a classical spin model with periodic boundary condi-
tions in one direction. In this context the formulation of gauge theories on a space
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time lattice was of utmost importance. Lattice gauge theories with discrete gauge
groups have been investigated by F. WEGNER [17] and three years later K. WIL-
SON succeeded in putting non-Abelian gauge theories on a spacetime lattice [18].
Many recent non-perturbative results on gauge theories at zero and finite tempera-
tures are based on this pioneering work.

The interrelation between quantum field theories at zero or finite temperature and
classical spin models is extremely beneficial both for QFT and statistical physics.
For example, many non-perturbative problems of interest in QFT can be handled
with the powerful and well-established methods of classical statistical physics. For
example, on may address difficult problems like mass generation, decay widths,
symmetry breaking, phase transitions or condensates, to name a few. Thereby many
rigorous results, inequalities, dualities and approximation methods in statistical
physics can be put to use in lattice field theory. Shortly after the seminal work
of K. Wilson, the first numerical simulations of lattice gauge theories were per-
formed [19, 20]. Today observable quantities as for example particle masses, decay
widths, condensates, thermodynamical potentials, and finite temperature phase di-
agrams can be calculated with the powerful Monte Carlo method. The following
chapters contain an introduction into this exciting and active fields of research in
theoretical physics. For a further reading I included primary and secondary litera-
ture, including textbooks, at the end of each chapter.
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Chapter 2
Path Integrals in Quantum and Statistical
Mechanics

There exist three apparently different formulations of quantum mechanics: HEISEN-
BERG’s matrix mechanics, SCHRÖDINGER’s wave mechanics and FEYNMAN’s path
integral approach. In contrast to matrix and wave mechanics, which are based on the
Hamiltonian approach the latter is based on the Lagrangian approach.

2.1 Summing Over All Paths

Already back in 1933 DIRAC asked himself, whether the classical Lagrangian and
action are as significant in quantum mechanics as they are in classical mechanics
[1, 2]. He observed that the probability amplitude

K
(
t, q ′, q

)= 〈
q ′
∣∣e−iĤ t/�|q〉 (2.1)

for the propagation of a system from a point with coordinate q to another point with
coordinate q ′ in time t is given by

K
(
t, q ′,p

)∝ eiS[qcl]/�, (2.2)

where qcl denotes the classical trajectory from q to q ′. In the exponent the action of
this trajectory enters as a multiple of Planck’s reduced constant �. For a free particle
with Lagrangian

L0 = m

2
q̇2 (2.3)

the formula (2.2) is verified easily: A free particle moves with constant velocity
(q ′ − q)/t from q to q ′ and the action of the classical trajectory is

S[qcl] =
∫ t

0
dsL0

[
qcl(s)

]= m

2t

(
q ′ − q

)2
.

The factor of proportionality in (2.2) is then uniquely fixed by the condition

e−iĤ t/� → 1 for t → 0, which in position space reads

lim
t→0

K
(
t, q ′, q

)= δ
(
q ′, q

)
. (2.4)
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6 2 Path Integrals in Quantum and Statistical Mechanics

Alternatively, it is fixed by the property e−iĤ t/�e−iĤ s/� = e−iĤ (t+s)/� that takes the
form

∫
duK

(
t, q ′, u

)
K(s,u, q)=K

(
t + s, q ′, q

)
(2.5)

in position space. Thus, the correct free-particle propagator on a line is given by

K0
(
t, q ′, q

)=
(

m

2π i�t

)1/2

eim(q ′−q)2/2�t . (2.6)

Similar results hold for the harmonic oscillator or systems for which 〈q̂(t)〉 fulfills
the classical equation of motion. For such systems 〈V ′(q̂)〉 = V ′(〈q̂〉) holds true.
However, for general systems the simple formula (2.2) must be extended and it was
FEYNMAN who discovered this extension back in 1948. He realized that all paths
from q to q ′ (and not only the classical path) contribute to the propagator. This
means that in quantum mechanics a particle can potentially move on any path q(s)

from the initial to the final destination,

q(0)= q and q(t)= q ′. (2.7)

The probability amplitude emerges as the superposition of contributions from all
trajectories,

K
(
t, q ′, q

)∼
∑

all paths

eiS[path]/�, (2.8)

where a single path contributes a term ∼ exp(iS[path]/�).
In passing we note that already in 1923 WIENER introduced the sum over all

paths in his studies of stochastic processes [3]. Thereby a single path was weighted
with a real and positive probability and not with a complex amplitude as in (2.8).
Wiener’s path integral corresponds to Feynman’s path integral for imaginary time
and describes quantum systems in thermal equilibrium with a heat bath at fixed
temperature. In this book we will explain this extraordinary result and apply it to in-
teresting physical systems. Moreover, the path integral method allows for a uniform
treatment of quantum mechanics, quantum field theory and statistical mechanics and
can be regarded as a basic tool in modern theoretical physics. It represents an alter-
native approach to the canonical quantization of classical systems and earned its first
success in the 1950s. The path integral method is very beautifully and intelligibly
presented in Feynman’s original work [4] as well as in his book with HIBBS [5].
The latter reference contains many applications and is still recognized as a standard
reference. Functional integrals have been developed further by outstanding mathe-
maticians and physicists, especially by KAC [9]. An adequate reference for these
developments is contained in the review article by GELFAND and YAGLOM [10].
In the present chapter we can only give a short introduction to path integrals. For a
deeper understanding the reader should consult more specialized books and review
articles. Some of them are listed in the bibliography at the end of this chapter.
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2.2 Recalling Quantum Mechanics

There are two well-established ways to quantize a classical system: canonical quan-
tization and path integral quantization. For completeness and later use we recall the
main steps of canonical quantization both in Schrödinger’s wave mechanics and
Heisenberg’s matrix mechanics.

A classical system is described by its coordinates {qi} and momenta {pi} on
phase space Γ . An observable O is a real-valued function on Γ . Examples are the
coordinates on phase space and the energy H(q,p) of the system under considera-
tion. We assume that phase space comes along with a symplectic structure and has
local coordinates with Poisson brackets

{
qi,pj

}= δij . (2.9)

The brackets are extended to observables through antisymmetry and the derivation
rule {OP,Q} = O{P,Q} + {O,Q}P . The evolution in time of an observable is
determined by

Ȯ = {O,H }, e.g. q̇i = {
qi,H

}
and ṗi = {pi,H }. (2.10)

In the canonical quantization the function on phase space are mapped to operators
and the Poisson brackets of two functions become commutators of the associated
operators:

O(q,p)→ Ô(q̂, p̂) and {O,P }→ 1

i�
[Ô, P̂ ]. (2.11)

The time evolution of an (not explicitly time-dependent) observable is determined
by Heisenberg’s equation

dÔ

dt
= i

�
[Ĥ , Ô]. (2.12)

In particular the phase space coordinates (qi,pi) become operators with commuta-
tion relations [q̂i , p̂j ] = i�δij and time evolution given by

dq̂i

dt
= i

�

[
Ĥ , q̂i

]
and

dp̂i
dt

= i

�
[Ĥ , p̂i].

For a system of non-relativistic and spinless particles the Hamiltonian reads

Ĥ = Ĥ0 + V̂ with Ĥ0 = 1

2m

∑
p̂2
i , (2.13)

and one arrives at Heisenberg’s equations of motion,

dq̂i

dt
= p̂i

2m
and

dp̂i
dt

=−V̂ ,i . (2.14)

Observables are represented by hermitian operators on a Hilbert space H , whose
elements characterize the states of the system:

Ô(q̂, p̂) :H →H . (2.15)
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Consider a particle confined to an endless wire. Its Hilbert space is H = L2(R) and
its position and momentum operator are represented in position space as

(q̂ψ)(q)= qψ(q) and (p̂ψ)(q)= �

i
∂qψ(q). (2.16)

In experiments we can measure matrix elements of observables, represented by her-
mitian operators, and in particular expectation values of hermitian operators in a
state of the system. The time dependence of an expectation value 〈ψ |Ô(t)|ψ〉 is
determined by the Heisenberg equation (2.12).

The transition from the Heisenberg picture to the Schrödinger picture involves a
time-dependent similarity transformation,

Ôs = e−itĤ /�ÔeitĤ /� and |ψs〉 = e−itĤ /�|ψ〉, (2.17)

and leads to time-independent observables in the Schrödinger picture,

d

dt
Ôs = e−itĤ /�

(
− i

�
[Ĥ , Ô] + d

dt
Ô

)
eitĤ /� = 0.

Note that the Hamiltonian operator is the same in both pictures, Ĥs = Ĥ and that
all expectation values are left invariant by the similarity transformation,

〈ψ |Ô(t)|ψ〉 = 〈
ψs(t)

∣∣Ôs
∣∣ψs(t)

〉
. (2.18)

A state vector in the Schrödinger picture |ψs(t)〉 fulfills the Schrödinger equation

i�
d

dt
|ψs〉 = Ĥ |ψs〉 ⇐⇒ ∣∣ψs(t)

〉= e−itĤ /�
∣∣ψs(0)

〉
. (2.19)

In position space this formal solution of the evolution equation has the form

ψs
(
t, q ′

)≡ 〈
q ′|ψs(t)

〉=
∫ 〈

q ′
∣∣e−itĤ /�|q〉〈q|ψs(0)

〉
dq

≡
∫

K
(
t, q ′, q

)
ψs(0, q)dq, (2.20)

where we inserted the resolution of the identity with q̂-eigenstates,
∫

dq|q〉〈q| = 1, (2.21)

and introduced the kernel of the unitary time evolution operator

K
(
t, q ′, q

)= 〈
q ′
∣∣K̂(t)|q〉, K̂(t)= e−itĤ /�. (2.22)

The propagator K(t, q ′, q) is interpreted as the probability amplitude for the prop-
agation from q at time 0 to q ′ at time t . This is emphasized by the notation

K
(
t, q ′, q

)≡ 〈
q ′, t |q,0

〉
. (2.23)

The amplitude solves the time-dependent Schrödinger equation

i�
d

dt
K
(
t, q ′, q

)= ĤK
(
t, q ′, q

)
, (2.24)
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where Ĥ acts on q ′, and fulfills the initial condition

lim
t→0

K
(
t, q ′, q

)= δ
(
q ′ − q

)
. (2.25)

The conditions (2.24) and (2.25) uniquely define the propagator. In particular for a
non-relativistic particle with Hamiltonian (2.13) in d dimensions the solution reads

K0
(
t, q ′, q

)= 〈
q ′
∣∣e−itĤ0/�|q〉 =

(
m

2π i�t

)d/2

eim(q ′−q)2/2�t , q, q ′ ∈R
d . (2.26)

In one dimension we recover the result (2.6). After this preliminaries we now turn
to the path integral representation of the propagator.

2.3 Feynman–Kac Formula

We shall derive Feynman’s path integral representation for the unitary time evolution
operator exp(−iĤ t) as well as Kac’s path integral representation for the positive
operator exp(−Ĥ τ ). Thereby we shall utilize the product formula of TROTTER. In
case of matrices this formula was already verified by LIE and has the form:

Theorem 2.1 (Lie’s theorem) For two matrices A and B

eA+B = lim
n→∞

(
eA/neB/n)n.

To prove this theorem we define for each n the two matrices Sn := exp(A/n+
B/n) and Tn := exp(A/n) exp(B/n) and telescope the difference of their nth powers,

∥∥Sn
n − Tnn

∥∥= ∥∥Sn−1
n (Sn − Tn)+ Sn−2

n (Sn − Tn)Tn + · · · + (Sn − Tn)T
n−1
n

∥∥.

Since the norm of a product is less or equal than the product of the norms we have
‖ exp(X)‖ ≤ exp(‖X‖). Using the triangle inequality we have

‖Sn‖,‖Tn‖ ≤ a1/n with a = e‖A‖+‖B‖

and therefore
∥
∥Sn

n − Tnn
∥
∥≡ ∥

∥eA+B − (
eA/neB/n

)n∥∥≤ n× a(n−1)/n‖Sn − Tn‖.
Finally, using Sn − Tn = −[A,B]/2n2 +O(1/n3), the product formula is verified
for matrices. But the theorem also holds for unbounded self-adjoint operators.

Theorem 2.2 (Trotter’s theorem) If Â and B̂ are self-adjoint operators and Â+ B̂

is essentially self-adjoint on the intersection D of their domains, then

e−it (Â+B̂) = s- lim
n→∞

(
e−itÂ/ne−itB̂/n)n. (2.27)

If in addition Â and B̂ are bounded from below, then

e−τ(Â+B̂) = s- lim
n→∞

(
e−τÂ/ne−τ B̂/n

)n
. (2.28)
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The convergence here is in the sense of the strong operator topology. For opera-
tors Ân and Â on a common domain D in the Hilbert space we have s- limn→∞ Ân =
Â iff ‖Ânψ − Âψ‖→ 0 for all ψ ∈D . Formula (2.27) is used in quantum mechan-
ics and formula (2.28) finds its application in statistical physics and the Euclidean
formulation of quantum mechanics [7, 8].

Let us assume that Ĥ can be written as Ĥ = Ĥ0 + V̂ and apply the product
formula to the evolution kernel in (2.22). With ε = t/n and �= 1 we obtain

K
(
t, q ′, q

)= lim
n→∞

〈
q ′
∣∣(e−iεĤ0e−iεV̂ )n|q〉

= lim
n→∞

∫
dq1 · · ·dqn−1

j=n−1∏

j=0

〈qj+1|e−iεĤ0e−iεV̂ |qj 〉, (2.29)

where we repeatedly inserted the resolution of the identity (2.21) and denoted the
initial and final point by q0 = q and qn = q ′, respectively. The potential V̂ is diago-
nal in position space such that

〈qj+1|e−iεĤ0e−iεV̂ |qj 〉 = 〈qj+1|e−iεĤ0 |qj 〉e−iεV (qj ). (2.30)

Here we insert the result (2.26) for the propagator of the free particle with Hamilto-
nian Ĥ0 and obtain

K
(
t, q ′, q

)= lim
n→∞

∫
dq1 · · ·dqn−1

(
m

2π iε

)n/2

× exp

{

iε
j=n−1∑

j=0

(
m

2

(
qj+1 − qj

ε

)2

− V (qj )

)}

. (2.31)

This is the celebrated Feynman–Kac formula, which provides the path integral rep-
resentation for the propagator. To make clear why it is called path integral, we divide
the time interval [0, t] into n subintervals of equal length ε = t/n and identify qk
with q(s = kε). Now we connect the points

(0, q0), (ε, q1), . . . , (t − ε, qn−1), (t, qn)

by straight line segments, which give rise to a broken-line path as depicted in
Fig. 2.1. The exponent in (2.31) is just the Riemann integral for the action of a
particle moving along the broken-line path,

j=n−1∑

j=0

ε

{
m

2

(
qj+1 − qj

ε

)2

− V (qj )

}
=

∫ t

0
ds

{
m

2

(
dq

ds

)2

− V
(
q(s)

)
}
. (2.32)

The integral
∫

dq1 · · ·dqn−1 represents the sum over all broken-line paths from q

to q ′. Every continuous path can be approximated by a broken-line path if only ε is
small enough. Next we perform the so-called continuum limit ε→ 0 or equivalently
n→∞. In this limit the finite-dimensional integral (2.31) turns into an infinite-
dimensional (formal) integral over all paths from q to q ′. With the definition

(
m

2π iε

)n/2

=: C (2.33)
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Fig. 2.1 Broken-line path
entering the discretized path
integral (2.31)

we arrive at the formal result

K
(
t, q ′, q

)= C

∫ q(t)=q ′

q(0)=q
DqeiS[q]/�. (2.34)

The ‘measure’ Dq is defined via the limiting process n→∞ in (2.31). Since the
infinite product of Lebesgue measures does not exist, D has no precise mathematical
meaning. Only after a continuation to imaginary time a measure on all paths can be
rigorously defined.

The formula (2.34) holds true for more general systems, for example interacting
particles moving in more than one dimension and in the presence of external fields.
It also applies to mechanical systems with generalized coordinates q1, . . . , qN . The
formula is also correct in quantum field theories where one integrates over all fields
instead of all paths. Further properties of the path integral as well as many examples
and applications can be found in the reference given at the end of this chapter.

2.4 Euclidean Path Integral

The oscillating integrand exp(iS) entering the path integral (2.34) leads to distri-
butions. If only we could suppress these oscillations, then it may be possible to
construct a well-defined path integral. This may explain why most rigorous work on
path integrals is based on imaginary time. For imaginary time it is indeed possible
to construct a measure on all paths: the Wiener measure. The continuation from real
to imaginary time is achieved by a Wick rotation and the continuation from imagi-
nary time back to real time by an inverse Wick rotation. In practice, one replaces t
by −iτ in the path integral (2.34), works with the resulting Euclidean path integral,
and replaces τ by it in the final expressions.

2.4.1 Quantum Mechanics in Imaginary Time

The unitary time evolution operator has the spectral representation

K̂(t)= e−iĤ t =
∫

e−iEt dP̂E, (2.35)
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where P̂E is the spectral family of the Hamiltonian operator Ĥ . If Ĥ has discrete
spectrum then P̂E is the orthogonal projector onto the subspace of H spanned by
all eigenfunctions with energies less than E. In the following we assume that the
Hamiltonian operator is bounded from below. Then we can subtract its ground state
energy to obtain a non-negative Ĥ for which the integration limits in (2.35) are 0
and ∞. With the substitution t → t − iτ we obtain

e−(τ+it)Ĥ =
∫ ∞

0
e−E(τ+it) dP̂E. (2.36)

This defines a holomorphic semigroup in the lower complex half-plane

{t − iτ ∈C, τ ≥ 0}. (2.37)

If the operator (2.36) is known on the lower imaginary axis (t = 0, τ ≥ 0), then one
can perform an analytic continuation to the real axis (t, τ = 0). The analytic con-
tinuation to complex time t →−iτ corresponds to a transition from the Minkowski
metric ds2 = dt2 − dx2 − dy2 − dz2 to a metric with Euclidean signature. Hence a
theory with imaginary time is called Euclidean theory.

The time evolution operator K̂(t) exists for real time and defines a one-
parametric unitary group. It fulfills the Schrödinger equation

i
d

dt
K̂(t)= Ĥ K̂(t)

with a complex and oscillating kernel K(t, q ′, q)= 〈q ′|K̂(t)|q〉. For imaginary time
we have a hermitian (and not unitary) evolution operator

K̂(τ )= e−τĤ (2.38)

with positive spectrum. K̂(τ ) exists for positive τ and form a semigroup only. For
almost all initial data evolution back into the ‘imaginary past’ is impossible.

The evolution operator for imaginary time satisfies the heat equation

d

dτ
K̂(τ )=−Ĥ K̂(τ ), (2.39)

instead of the Schrödinger equation and has kernel

K
(
τ, q ′, q

)= 〈
q ′
∣∣e−τĤ |q〉, K

(
0, q ′, q

)= δ
(
q ′, q

)
. (2.40)

This kernel is real1 for a real Hamiltonian. Furthermore it is strictly positive:

Theorem 2.3 Let the potential V be continuous and bounded from below and Ĥ =
−Δ+ V̂ be an essentially self-adjoint operator. Then

〈
q ′
∣∣e−τĤ |q〉> 0. (2.41)

1If we couple the system to a magnetic field, Ĥ and K̂(τ ) become complex quantities.
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The reader may consult the textbook [6] for a proof of this theorem. As examples
we consider the kernel of the free particle with mass m,

K0
(
τ, q ′, q

)=
(

m

2πτ

)d/2

e−m(q ′−q)2/2τ , (2.42)

and of the harmonic oscillator with frequency ω,

Kω

(
τ, q ′, q

)=
(
mω/(2π)

sinhωτ

)d/2

exp

{
−mω

2

(
(
q ′2 + q2) cothωτ − 2q ′q

sinhωτ

)}
,

(2.43)

both for imaginary time and in d dimensions. Both kernels are strictly positive. This
positivity is essential for the far-reaching relation of Euclidean quantum theory and
probability theory: The quantity

Pτ (q)≡ CK(τ, q,0) (2.44)

can be interpreted as probability for the transition from point 0 to point q during the
time interval τ .2 The probability of ending somewhere should be 1,

∫
dqPτ (q)= 1, (2.45)

and this requirement determines the constant C. For a free particle we obtain

Pτ (q)=
(

m

2πτ

)d/2

e−mq2/2τ .

It represents the probability density for Brownian motion with diffusion coefficient
inversely proportional to the mass, D = 1/2m.

In quantum field theory vacuum expectation values of products of field operators
at different spacetime points encode all information about the theory. They deter-
mine scattering amplitudes and spectral properties of the particles and hence play a
distinguished role. In quantum mechanics these expectation values are given by

W(n)(t1, . . . , tn)= 〈0|q̂(t1) · · · q̂(tn)|0〉, q̂(t)= eitĤ q̂e−itĤ . (2.46)

These Wightman functions are not symmetric in their arguments t1, . . . , tn since
the position operators at different times do not commute. Again we normalize the
Hamiltonian such that the energy of the ground state |0〉 vanishes and perform an
analytic continuation of the Wightman functions to complex times zi = ti − iτi :

W(n)(z1, . . . , zn)= 〈0|q̂e−i(z1−z2)Ĥ q̂e−i(z2−z3)Ĥ q̂ · · · q̂e−i(zn−1−zn)Ĥ q̂|0〉. (2.47)

We used that Ĥ annihilates the ground state or that exp(iζ Ĥ )|0〉 = |0〉. The func-
tions W(n) are well-defined if the imaginary parts of their arguments zk are ordered
according to

�(zk − zk+1)≤ 0.

2To keep the notation simple, we use q as the final point.
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With zi = ti − iτi one ends up with analytic functions W(n) in the region

τ1 > τ2 > · · ·> τn. (2.48)

The Wightman distributions for real time represent boundary values of the analytic
Wightman functions with complex arguments:

W(n)(t1, . . . , tn)= lim
�zi→0

�(zk+1−zk )>0

W(n)(z1, . . . , zn). (2.49)

On the other hand, if the arguments are purely imaginary then we obtain the
Schwinger functions. For τ1 > τ2 > · · ·> τn they are given by

S(n)(τ1, . . . , τn)=W(n)(−iτ1, . . . ,−iτn)

= 〈0|q̂e−(τ1−τ2)Ĥ q̂e−(τ2−τ3)Ĥ q̂ · · · q̂e−(τn−1−τn)Ĥ q̂|0〉. (2.50)

As an example we consider the harmonic oscillator with Hamiltonian

Ĥ = ωâ†â,

expressed in terms of the step operators â, â†, which obey the commutation relation
[â, â†] = 1. The ground state |0〉 in annihilated by â and hence has zero energy.
The first excited state |1〉 = â†|0〉 has energy ω. The two-point Wightman function
depends on the time difference only,

W(2)(t1 − t2)= 〈0|q̂(t1)q̂(t2)|0〉 = 1

2mω
〈0|(â + â†)e−i(t1−t2)Ĥ (

â + â†)|0〉

= 1

2mω
〈1|e−itωâ†â|1〉 = e−iω(t1−t2)

2mω
.

The corresponding Schwinger function is given by

S(2)(τ1 − τ2)= e−ω(τ1−τ2)

2mω
(τ1 > τ2). (2.51)

In a relativistic quantum field theory the Schwinger functions S(n)(x1, . . . , xn) are
invariant under Euclidean Lorentz transformation from the group SO(4). This in-
variance together with locality imply that the S(n) are symmetric functions of their
arguments xi ∈R

4. This is not necessarily true for the Schwinger functions in quan-
tum mechanics.

2.4.2 Imaginary-Time Path Integral

To formulate the path integral for imaginary time we employ the product formula
(2.28), which follows from the product formula (2.27) through the substitution of it
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by τ . For such systems the analogue of (2.31) for Euclidean time τ is obtained by
the substitution of iε by ε. Thus we find

K
(
τ, q ′, q

) = 〈
q̂ ′
∣∣e−τĤ/�|q̂〉

= lim
n→∞

∫
dq1 · · ·dqn−1

(
m

2π�ε

)n/2

e−SE(q0,q1,...,qn)/�,

SE(. . .) = ε

n−1∑

j=0

{
m

2

(
qj+1 − qj

ε

)2

+ V (qj )

}
,

(2.52)

where q0 = q and qn = q ′. The multi-dimensional integral represents the sum over
all broken-line paths from q to q ′. Interpreting SE as Hamiltonian of a classical
lattice model and � as temperature, it is (up to the fixed endpoints) the partition
function of a one-dimensional lattice model on a lattice with n+ 1 sites. The real-
valued variable qj defined on site j enters the action SE, which contains interactions
between the variables qj and qj+1 at neighboring sites. The values of the lattice field

{0,1, . . . , n− 1, n}→ {q0, q1, . . . , qn−1, qn}
are prescribed at the end points q0 = q and qn = q ′. Note that the classical limit
�→ 0 corresponds to the low-temperature limit of the lattice-system.

The multi-dimensional integral (2.52) corresponds to the summation over all lat-
tice fields. What happens to the finite-dimensional integral when we take the con-
tinuum limit n→∞? Then we obtain the Euclidean path integral representation for
the positive kernel

K
(
τ, q ′, q

)= 〈
q ′
∣∣e−τĤ/�|q〉 = C

∫ q(τ)=q ′

q(0)=q
Dqe−SE[q]/�. (2.53)

The integrand contains the Euclidean action

SE[q] =
∫ τ

0
dσ

{
m

2
q̇2 + V

(
q(σ )

)
}
, (2.54)

which for many physical systems is bounded from below.

2.5 Path Integral in Quantum Statistics

The Euclidean path integral formulation immediately leads to an interesting connec-
tion between quantum statistical mechanics and classical statistical physics. Indeed,
if we set τ/�≡ β and integrate over q = q ′ in (2.53), then we end up with the path
integral representation for the canonical partition function of a quantum system with
Hamiltonian Ĥ at inverse temperature β = 1/kBT . More precisely, setting q = q ′
and τ = �β in the left-hand side of this formula, then the integral over q yields the
trace of exp(−βĤ ), which is just the canonical partition function,

∫
dqK(�β,q, q)= tr e−βĤ = Z(β)=

∑
e−βEn with β = 1

kBT
. (2.55)
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Setting q = q ′ in the Euclidean path integral in (2.53) means that we integrate over
paths beginning and ending at q during the imaginary-time interval [0,�β]. The
final integral over q leads to the path integral over all periodic paths with period �β ,

Z(β)= C

∮
Dqe−SE[q]/�, q(�β)= q(0). (2.56)

For example, the kernel of the harmonic oscillator in (2.43) on the diagonal is

Kω(β,q, q)=
√

mω

2π sinh(ωβ)
exp

{−mω tanh(ωβ/2)q2}, (2.57)

where we used units with �= 1. The integral over q yields the partition function

Z(β)=
√

mω

2π sinh(ωβ)

∫
dq exp

{−mω tanh(ωβ/2)q2}

= 1

2 sinh(ωβ/2)
= e−ωβ/2

1− e−ωβ
= e−ωβ/2

∞∑

n=0

e−nωβ, (2.58)

where we used sinhx = 2 sinhx/2 coshx/2. A comparison with the spectral sum
over all energies in (2.55) yields the energies of the oscillator with (angular) fre-
quency ω,

En = ω

(
n+ 1

2

)
, n= 0,1,2, . . . . (2.59)

For large values of ωβ , i.e. for very low temperature, the spectral sum is dominated
by the contribution of the ground state energy. Thus for cold systems the free energy
converges to the ground state energy

F(β)≡− 1

β
logZ(β)

ωβ→∞→ E0. (2.60)

One often is interested in the energies and wave functions of excited states. We now
discuss an elegant method to extract this information from the path integral.

2.5.1 Thermal Correlation Functions

The energies of excited states are encoded in the thermal correlation functions.
These functions are expectation values of products of the position operator

q̂E(τ )= eτĤ/�q̂e−τĤ/�, q̂E(0)= q̂(0), (2.61)

at different imaginary times in the canonical ensemble,

〈
q̂E(τ1) · · · q̂E(τn)

〉
β
≡ 1

Z(β)
tr
(
e−βĤ q̂E(τ1) · · · q̂E(τn)

)
. (2.62)

The normalizing function Z(β) is the partition function (2.56). From the thermal
two-point function
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〈
q̂E(τ1)q̂E(τ2)

〉
β
= 1

Z(β)
tr
(
e−βĤ q̂E(τ1)q̂E(τ2)

)

= 1

Z(β)
tr
(
e−(β−τ1)Ĥ q̂e−(τ1−τ2)Ĥ q̂e−τ2Ĥ

)
(2.63)

we can extract the energy gap between the ground state and the first excited state.
For this purpose we use orthonormal energy eigenstates |n〉 to calculate the trace
and in addition insert the resolution of the identity-operator 1 = ∑ |m〉〈m|. This
yields

〈. . .〉β = 1

Z(β)

∑

n,m

e−(β−τ1+τ2)Ene−(τ1−τ2)Em〈n|q̂|m〉〈m|q̂|n〉. (2.64)

Note that in the sum over n the contributions from the excited states are exponen-
tially suppressed at low temperatures β →∞, implying that the thermal two-point
function converges to the Schwinger function in this limit:

〈
q̂E(τ1)q̂E(τ2)

〉
β

β→∞→
∑

m≥0

e−(τ1−τ2)(Em−E0)
∣∣〈0|q̂|m〉∣∣2 = 〈0|q̂E(τ1)q̂E(τ2)|0〉.

(2.65)

In the first step we used that for low temperature the partition function tends to
exp(−βE0). Likewise, we find for the one-point function the result

lim
β→∞

〈
q̂E(τ )

〉
β
= 〈0|q̂|0〉. (2.66)

In the connected two-point function
〈
q̂E(τ1)q̂E(τ2)

〉
c,β

≡ 〈
q̂E(τ1)q̂E(τ2)

〉
β
− 〈

q̂E(τ1)
〉
β

〈
q̂E(τ2)

〉
β

(2.67)

the term with m = 0 in the sum (2.65) is absent and this leads to an exponential
decaying function for large time-differences,

lim
β→∞

〈
q̂E(τ1)q̂E(τ2)

〉
c,β

=
∑

m>0

e−(τ1−τ2)(Em−E0)
∣∣〈0|q̂|m〉∣∣2. (2.68)

For large time-differences τ1 − τ2 the term with m= 1 dominates the sum such that
〈
q̂E(τ1)q̂E(τ2)

〉
c,β→∞ → e−(E1−E0)(τ1−τ2)

∣∣〈0|q̂|1〉∣∣2, τ1 − τ2 →∞. (2.69)

It follows that we can read off the energy gap E1 − E0 as well as the transition
probability |〈0|q|1〉|2 from the asymptotics of the connected two-point function.

To arrive at the path integral representation for the thermal two-point correlation
function we consider the matrix elements

〈
q ′
∣∣K̂(β)q̂E(τ1)q̂E(τ2)|q〉, with q̂E(τ )= K̂(−τ)q̂K̂(τ ). (2.70)

Here K̂(τ ) = exp(−τĤ ) denotes the evolution operator for imaginary time with
path integral representation given in (2.53). Now we insert twice the resolution of
the identity and obtain

〈. . .〉 =
∫

dv du
〈
q ′
∣∣K̂(β − τ1)|v〉v〈v|K̂(τ1 − τ2)|u〉u〈u|K̂(τ2)|q〉.
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In this result we make use of the path integral representations for the three propa-
gators to find the path integral representation: Firstly, we sum over all paths from
q → u in the time interval τ2 and multiply the result with the coordinate u at time τ2.
Next we sum over all paths u→ v in the time interval τ1 − τ2 and multiply with the
coordinate v at time τ1. The last step includes the summation over all paths v→ q ′
in the time interval β − τ1. The integration over the intermediate positions u and v

means that the summation extends over all paths q → q ′ and not only over paths
going through u at time τ2 and v at time τ1. Besides exp(−SE), the integrand in-
cludes the multiplicative factor vu= q(τ1)q(τ2). Since the entire propagation time
is β we end up with

〈
q ′
∣∣e−βĤ q̂E(τ1)q̂E(τ2)|q〉 = C

∫ q(β)=q ′

q(0)=q
Dqe−SE[q]q(τ1)q(τ2), τ1 > τ2. (2.71)

The thermal expectation value is given by the trace. Thus we set q = q ′, integrate
over q and divide the result by the partition function Z(β). Integrating over q is
equivalent to summing over all periodic paths with period β . Hence, we obtain

〈
q̂E(τ1)q̂E(τ2)

〉
β
= 1

Z(β)

∮
Dqe−SE[q]q(τ1)q(τ2) (2.72)

with partition function given in (2.56). In the derivation we assumed the time-order
τ1 > τ2 when applying the Trotter formula.

The path integral representation of higher time-ordered correlation functions are
obtained in a similar fashion. They are all generated by the kernel

Z
(
β, j, q ′, q

)= C

∫ q(β)=q ′

q(0)=q
Dqe−SE[q]+

∫
dτj (τ)q(τ), (2.73)

in which one integrates over all paths from q to q ′, or by the partition function in
presence of an external source,

Z(β, j)=
∫

dqZ(β, j, q, q)= C

∮

q(0)=q(β)
Dqe−SE[q]+

∫
dτj (τ)q(τ). (2.74)

The object in (2.73) generates matrix elements similarly as in (2.71) but with an
arbitrary number of insertions of position operators. The function Z(β, j) generates
all time-ordered thermal correlation functions. For example, the thermal two-point
function follows by differentiating the generating function (2.74) twice:

〈
T q̂E(τ1)q̂E(τ2)

〉
β
= 1

Z(β,0)

δ2

δj (τ1)δj (τ2)
Z(β, j)

∣∣
∣∣
j=0

, (2.75)

wherein T indicates the time ordering. Since the right-hand side is symmetric in its
arguments τ1, τ2 and both sides are identical for τ1 > τ2, we must include the time-
ordering on the left-hand side. The ordering also results from a repeated calculation
for τ2 > τ1.

The connected correlation functions are generated by the logarithm of the parti-
tion function, called Schwinger functional

W(β, j)≡ logZ(β, j), (2.76)
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by repeated differentiations with respect to the external source,

〈
T q̂E(τ1)q̂E(τ2) · · · q̂E(τn)

〉
c,β

= δn

δj (τ1) · · · δj (τn)W(β, j)

∣∣∣∣
j=0

. (2.77)

If we consider conservative systems and a time-independent source j , then the
Schwinger functional is proportional to the free energy in the presence of the source.

2.6 The Harmonic Oscillator

We wish to study the path integral for the Euclidean oscillator with discretized time.
The results are instructive particularly with regard to lattice field theories consid-
ered later in this book. So let us discretize the Euclidean time interval [0, τ ] with n

sampling points separated by a lattice constant ε = τ/n. For the Lagrangian

L= m

2
q̇2 +μq2 (2.78)

the discretized path integral over periodic paths reads

Z =
∫

dq1 · · ·dqn
(

m

2πε

)n/2

exp

{

−ε
n−1∑

j=0

(
m

2

(
qj+1 − qj

ε

)2

+μq2
j

)}

=
(

m

2πε

)n/2 ∫
dq1 · · ·dqn exp

(
−1

2
(q,Aq)

)
, (2.79)

where we assumed q0 = qn and introduced the symmetric matrix

A = m

ε

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

α −1 0 · · · 0 −1
−1 α −1 · · · 0 0

. . .

. . .

0 0 · · · −1 α −1
−1 0 · · · 0 −1 α

⎞

⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

, α = 2

(
1+ μ

m
ε2

)
. (2.80)

This is a Toeplitz matrix, in which each descending diagonal from left to right is
constant. This property results from the invariance of the action under lattice trans-
lations. For the explicit calculation of Z we consider the generating function

Z[j ] =
(

m

2πε

)n/2 ∫
dnq exp

{
−1

2
(q,Aq)+ (j,q)

}

= (m/ε)n/2

√
det A

exp

{
1

2

(
j,A−1j

)}
. (2.81)

Here we applied the known result for Gaussian integrals. The n eigenvalues of A are

λk = m

ε

(
α− 2 cos

2π

n
k

)
= 2

ε

(
με2 + 2m sin2 πk

n

)
, k = 1, . . . , n (2.82)
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and the corresponding orthonormal eigenvectors have the form

ψ(k)= 1√
n

(
zk, z2k, . . . , znk

)T
with z= e2π i/n. (2.83)

With the spectral resolution for the inverse matrix A−1 = ∑
k λ

−1
k ψ†(k)ψ(k) we

obtain

(
A−1)

pq
= ε

2n

n∑

k=1

e2π ik(p−q)/n

με2 + 2m sin2 πk
n

. (2.84)

Note that the connected correlation function

〈qi1 · · ·qim〉 =
∂m

∂ji1 · · · ∂qim
logZ[j ]

∣∣∣∣
j=0

(2.85)

of the harmonic oscillator vanishes for m> 2. This means that all correlation func-
tions are given in terms of the two-point function

〈qiqj 〉c = 〈qiqj 〉 = ∂2

∂ji∂jj

(
j,A−1j

)= (
A−1)

ij
. (2.86)

As a consequence of time-translation invariance the expectation value

〈
q2
i

〉= ε

2n

n∑

k=1

1

με2 + 2m sin2 πk
n

(2.87)

is independent of i. This and similar expectation values, together with the virial the-
orem, yield the ground state energies of Hamiltonians discretized on finite lattices.
More details and numerical results are found in the chapter on simulations.

2.7 Problems

2.1 (Gaussian integral) Show that
∫

dz1 dz̄1 · · ·dzn dz̄n exp

(
−

∑

ij

z̄iAij zj

)
= πn(det A)−1

with A being a positive Hermitian n×n matrix and zi complex integration variables.

2.2 (Harmonic oscillator) In (2.43) we quoted the result for the kernel Kω(τ, q
′, q)

of the d-dimensional harmonic oscillator with Hamiltonian

Ĥ = 1

2m
p̂2 + mω2

2
q̂2

at imaginary time τ . Derive this formula.
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Hint: Express the kernel in terms of the eigenfunctions of Ĥ , which for �=m=
ω= 1 are given by

exp
(−ξ2 − η2)

∞∑

n=0

ζ n

2nn!Hn(ξ)Hn(η)= 1
√

1− ζ 2
exp

(−(ξ2 + η2 − 2ξηζ )

1− ζ 2

)
.

The functions Hn denote the Hermite polynomials.

Comment This result also follows from the direct evaluation of the path integral.

2.3 (Free particle on a circle) A free particle moves on an interval and obeys peri-
odic boundary conditions. Compute the time evolution kernel K(tb − ta, qb, qa)=
〈qb, tb|qa, ta〉. Use the familiar formula for the kernel of the free particle (2.26) and
enforce the periodic boundary conditions by a suitable sum over the evolution kernel
for the particle on R.

2.4 (Connected and unconnected correlation function) The unconnected thermal
correlation functions are given by

〈
T q̂E(τ1) · · · q̂E(τn)

〉
β
= 1

Z(β)

δn

δj (τ1) · · · δj (τn)Z(β, j)
∣
∣∣∣
j=0

with generating functional

Z(β, j)=
∮

Dq exp

(
−SE[q] +

∫ β

0
j (τ )q(τ )

)
,

wherein one integrates over all β-periodic paths. Assume that the Euclidean La-
grangian density

LE(q, q̇)= 1

2
q̇2 + V (q)

contains an even potential, i.e. V (−q)= V (q).

(a) Show that 〈q̂E(τ )〉β = 0.
(b) Express the unconnected 4-point function 〈T q̂E(τ1) · · · q̂E(τ4)〉β via connected

correlation functions.

2.5 (Semi-classical expansion of the partition function) In Chap. 2.5 we discussed
the path integral representation of the thermal partition function, given by

Z(β)= C

∫
dq

∫ q(�β)=q

q(0)=q
Dqe−SE[q]/�.

We rescale the imaginary time and the amplitude according to

τ → �τ and q(.)→ �q(.).

After rescaling the ‘time interval’ is of length β instead of �β and

Z(β)= C

∫
dq

∫ q(β)=q/�

q(0)=q/�
Dq exp

{
−

∫ β

0

(
1

2
mq̇2 + V

(
�q(.)

)
)

dτ

}
.
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For a moving particle the kinetic energy dominates the potential energy for small �.
Thus we decompose each path into its constant part and the fluctuations about the
constant part: q(.)= q/�+ ξ(.). Show that

Z(β)= C

�

∫
dq

∫ ξ(β)=0

ξ(0)=0
Dξ exp

{
−

∫ β

0

(
1

2
mξ̇2 + V (q + �ξ)

)
dτ

}
.

Determine the constant C by considering the limiting case V = 0 with the well-
known result Z(β,q, q)= (m/2πβ�2)1/2. Then expand the integrand in powers of
� and prove the intermediate result

Z = C

�

∫
dqe−βV (q)

∫ ξ(β)=0

ξ(0)=0
Dξe−

1
2m

∫
dτ ξ̇2

{
1− �V ′(q)

∫
ξ(τ )

− 1

2
�

2
(
V ′′(q)

∫
ξ2(τ )− V ′2(q)

∫
ξ(τ )

∫
ξ(s)

)
+ · · ·

}
.

Conditional expectation values as

〈
ξ(τ1)ξ(τ2)

〉= 〈
ξ(τ2)ξ(τ1)

〉= C

∫ ξ(β)=0

ξ(0)=0
Dξe−

1
2m

∫
dτ ξ̇2

ξ(τ1)ξ(τ2)

are computed by differentiating the generating functional

C

∫ ξ(β)=0

ξ(0)=0
Dξe−

1
2m

∫
dτ ξ̇2+∫

dτjξ

= m

2πβ
exp

(
1

mβ

∫ β

0
dτ

∫ τ

0
dτ ′(β − τ)τ ′j (τ )j

(
τ ′
))
.

Prove this formula for the generating functional and compute the leading and sub-
leading contributions in the semi-classical expansion.

2.6 (High-temperature expansion of the partition function) Analyze the temperature
dependence of the partition function (set � = 1). Repeat the calculation in prob-
lem 2.5 but this time with the rescalings

τ → βτ and ξ →√
βξ,

and show that

Z(β)= C√
β

∫
dq

∫ ξ(1)=0

ξ(0)=0
Dξ exp

{
−

∫ 1

0

(
m

2
ξ̇2 + βV (q +√

βξ)

)
dτ

}
.

Expand Z(β) in powers of the inverse temperature and use the generating functional
in problem 2.5 (with β = 1) to compute the correlation functions. The remaining in-
tegrals over correlation functions are easily calculated. Determine the contributions
of order T 1/2, T −1/2 and T −3/2 in the high-temperature expansion of Z(β).
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Chapter 3
High-Dimensional Integrals

Unfortunately, path integrals can be evaluated only for very simple systems like
the harmonic oscillator, free particle or topological field theories. More compli-
cated systems are analyzed via perturbation theory (e.g. semi-classical expansion,
perturbative expansion in powers of the interaction, strong-coupling expansion,
high- and low-temperature expansions) or numerical methods. In Chap. 2 we have
demonstrated that path integrals for imaginary time or systems in thermal equilib-
rium may be approximated by finite-dimensional integrals. We discretized time as
s ∈ {0, ε, . . . , nε = τ } and approximated the Euclidean action by a Riemann sum.
The latter depends on the values

q = {q0, q1, . . . , qn} =
{
q(0), q(ε), . . . , q(nε)

}

of the path at the lattice points sk = kε. In this lattice approximation every expecta-
tion value is given by a finite-dimensional integral,

〈O〉 =
∫

DqO(q)e−SE(q)
∫

Dqe−SE(q)
with

∫
Dq =

∫ ∞

−∞

n∏

1

dqj . (3.1)

The function SE(q) = SE(q1, . . . , qn) in the exponents is the Euclidean lattice ac-
tion. For a particle on a line it is given in Eq. (2.52). In this chapter we shall only
consider Euclidean path integrals and thus skip the index E.

3.1 Numerical Algorithms

We are confronted with high-dimensional integrals in quantum statistics, solid-
state physics, Euclidean quantum field theory, high-energy physics and numerous
other branches in natural sciences or even the financial market. For example, con-
sider the expectation value of interest derivatives, which can be written as a high-
dimensional integral. Assuming a duration of 30×12 months and a separate interest
rate each month one is confronted with a 360-dimensional integral. Thus we are in
need of efficient algorithms to compute these integrals with a controllable error.

A. Wipf, Statistical Approach to Quantum Field Theory, Lecture Notes in Physics 864,
DOI 10.1007/978-3-642-33105-3_3, © Springer-Verlag Berlin Heidelberg 2013

25

http://dx.doi.org/10.1007/978-3-642-33105-3_3


26 3 High-Dimensional Integrals

RICHARD BELLMAN coined the phrase the curse of dimensionality to describe the
rapid growth in the difficulty as the number of integration variables increases [1].

3.1.1 Newton–Cotes Integration Method

We distinguish between two classes of numerical algorithms, depending on whether
we evaluate the integrand at equidistant sampling points (Newton–Cotes integra-
tion method) or at carefully chosen, but not equidistant sampling points (Gaussian
integration method). For particular integrands the Gaussian method may be much
more efficient. For example, the maximum degree of exactness is obtained for the
Gauss-Legendre formula, the sampling points of which are given by zeros of Legen-
dre polynomials. A lucid representation of the Gaussian integration method is found
in [2]. Other textbooks are [3–6].

Numerical algorithms are based on Riemann’s definition of integrals. To see
whether a given function f : [a, b] → R is Riemann-integrable, we choose a par-
tition of the interval

γ : a = x0 < x1 < x2 < · · ·< xn−2 < xn−1 < xn = b (3.2)

and consider the associated lower and upper Riemann sum

U(f,γ )=
n−1∑

i=0

(xi+1 − xi) · inf
{
f (x)|xi ≤ x ≤ xi+1

}

O(f,γ )=
n−1∑

i=0

(xi+1 − xi) · sup
{
f (x)|xi ≤ x ≤ xi+1

}
,

with O(f,γ )≥U(f,γ ). The function f is called Riemann-integrable, if

sup
γ
U(f, γ )= inf

γ
O(f, γ )

and we denote by
∫ b

a

f (x)dx ≡ sup
γ
U(f, γ ) (3.3)

the Riemann integral of f . This definition is easily extended to multi-dimensional
integrals and serves as point of departure for numerical algorithms.

Many algorithms are based on the approximation of arbitrary smooth functions
by polynomial interpolations. We remind the reader that there is a unique polyno-
mial Pm of degree ≤m, which assumes the values fi = f (xi) of a given function f

at (m+ 1) sampling points x0, x1, . . . , xm−1, xm. The construction of this interpo-
lating polynomial makes use of the m+ 1 Lagrange polynomials of degree m:

L(m)
p (x)=

m∏

i=0
i �=p

x − xi

xp − xi
, p = 0, . . . ,m with L(m)

p (xq)= δpq. (3.4)
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The interpolating polynomial of degree m is given by

Pm(x)=
m∑

p=0

f (xp)L
(m)
p (x). (3.5)

The error of the polynomial approximation is bounded by the following result:

Theorem 3.1 Let f be a (m+ 1)-times continuous differentiable function and Pm
the interpolating polynomial of degree ≤ m with sampling points x0, . . . , xm ∈ Δ.
Then there exists for every x ∈ Δ a point ξx (which lies in the smallest interval
containing all sampling points) such that

f (x)− Pm(x)= f (m+1)(ξx)

(m+ 1)! L(m)(x), L(m)(x)=
m∏

i=0

(x − xi). (3.6)

This theorem leads to the following representation of the integral from the small-
est to the largest sampling point:

∫ xm

x0

dx f (x)=
m∑

p=0

f (xp)

∫
dxL(m)

p (x)

︸ ︷︷ ︸
γ
(m)
p

+
∫

dx
f (m+1)(ξx)

(m+ 1)! L(m)(x). (3.7)

We call γ (m)
p the weights and xp the nodes of the integration formula. For equidistant

nodes at points

x0, x1 = x0 + ε, x2 = x0 + 2ε, . . . , xm = x0 +mε (3.8)

we find, after setting x = x0 + εt with t ∈ [0,m] in (3.7), the weights

γ (m)
p = ε

∫ m

0
dt

m∏

i=0
i �=p

t − i

p− i
≡ εw(m)

p = εw
(m)
m−p, p = 0,1, . . . ,m. (3.9)

Applying the formula (3.7) to constant functions yields the simple sum rule∑
p γ

(m)
p =mε or equivalently

w
(m)
0 +w

(m)
1 + · · · +w(m)

m =m. (3.10)

Hence the Newton–Cotes formulas can be written as
∫ xm

x0

dx f (x)∼
m∑

p=0

εw(m)
p f (x0 + εp). (3.11)

The corresponding weights w(m)
p for m= 0, . . . ,6 are listed in Table 3.1.

The integration step-length ε can be chosen sufficiently small in order to ensure
that the quadrature error is less than a prescribed tolerance. We illustrate how one
can estimate the error for the Simpson formula. Thus we consider the difference



28 3 High-Dimensional Integrals

Table 3.1 Weights for the Newton–Cotes formulas

m name p = 0 1 2 3 4 5 6

0 rectangle rule w
(0)
p = 1

1 trapezoidal rule 2×w
(1)
p = 1 1

2 Simpson’s rule 3×w
(2)
p = 1 4 1

3 3/8-rule 8×w
(3)
p = 3 9 9 3

4 Milne’s rule 45×w
(4)
p = 14 64 24 64 14

5 6-point rule 288×w
(5)
p = 95 375 250 250 288 95

6 Weddle’s rule 140×w
(6)
p = 41 216 27 272 27 216 41

between the integral of f from −ε to ε and the corresponding approximation (3.11)
with m= 2,

E2(ε)=
∫ ε

−ε
dx f (x)− ε

3

(
f (−ε)+ 4f (0)+ f (ε)

)
.

Differentiating the error E2(ε) three times with respect to ε leads to

E′′′
2 (ε)=−ε

3

(−f ′′′(−ε)+ f ′′′(ε)
)
.

The absolute value of this expression can be bounded as follows:

∣∣E′′′
2 (ε)

∣∣= ε

3

∣∣f ′′′(ε)− f ′′′(−ε)∣∣≤ 2ε

3
M3 with M3 = sup

t∈[−ε,ε]
∣∣f ′′′(t)

∣∣.

Integrating three times provides the error estimation

∣∣E2(ε)
∣∣≤M3 · ε

4

36
. (3.12)

If the function f is at least four times differentiable, then the we may apply the
mean value theorem to E′′′

2 and obtain

E′′′
2 (ε)=

2ε

3
ε · f (4)(ξ).

This results in an improved error bound,

∣
∣E2(ε)

∣
∣≤M4 · ε

5

90
with M4 = sup

t∈[−ε,ε]
∣
∣f (4)(t)

∣
∣. (3.13)

Hence with Simpson’s rule (Kepler’s rule for the calculation of wine casks) even cu-
bic polynomials are integrated in an exact manner. Analogous error bounds for ap-
proximations based on interpolating polynomials of degree m≤ 6 with equidistant
nodes are listed in Table 3.2. They bound the errors for integrals from the smallest
to the largest sampling point and contain as factors Mm = sup[x0,xm] |f (m)|.

With increasing degree m the coefficients of the Newton–Cotes formulas grow
rapidly and have alternating signs. This leads to integration formulas containing



3.1 Numerical Algorithms 29

Table 3.2 Error estimation of the integration over the interval [x0, xm] with xm = x0 +mε

m name Em(ε) m name Em(ε)

0 rectangle rule ε2M1/2 4 Milne’s rule 8ε7M6/945

1 trapezoidal rule ε3M2/12 5 6-point rule 275ε7M6/12096

2 Simpson’s rule ε5M4/90 6 Weddle’s rule 9ε9M8/1400

3 3/8-rule 3ε5M4/80

Fig. 3.1 In the composite formulas the interval is divided into subintervals or length ε. We cluster
m neighboring subintervals and apply the previous integration rules to each cluster

differences of large numbers. Largely for this reason higher-order Newton–Cotes
formulas are rarely used in practice. In passing we also note that any method based
on polynomial interpolation may lead to wrong results in case the function is not
sufficiently often differentiable.

Composite Integration Formulas

By partitioning the integration interval into smaller subintervals of equal length we
arrive at the composite rectangle, trapezoidal and Simpson rule or one of the higher-
order composite integration formulas. Thereby the number of intervals should be a
multiple of m. For the Simpson rule the situation is depicted in Fig. 3.1. Let us study
the composite Simpson rule in more detail. First we partition the interval [a, b] into
2n subintervals of length ε such that b− a = 2nε. The 2n+ 1 sampling points are
xj = a + εj with j = 0,1, . . . ,2n. The integral is approximated by

S2(f )≈ ε

3

({
f (x0)+ 4f (x1)+ f (x2)

}+ {
f (x2)+ 4f (x3)+ f (x4)

}+ · · ·
+ {

f (x2n−2)+ 4f (x2n−1)+ f
(
x2n

)})
.

The resulting formula is called composite Simpson quadrature formula, and reads

S2(f )= ε

3

(

f (x0)+ 4
n−1∑

j=0

f (x2j+1)+ 2
n−1∑

j=1

f (x2j )+ f (x2n)

)

. (3.14)

We can bound the error of the composite Simpson formula as follows:
∣∣∣∣

∫ b

a

f (x)dx − S2(f )

∣∣∣∣≤
1

90
ε5 · n sup

t∈[a,b]
∣∣f (4)(t)

∣∣

︸ ︷︷ ︸
M4

= b− a

180
ε4M4. (3.15)



30 3 High-Dimensional Integrals

Fig. 3.2 Numerical integration via the rectangle rule, the trapezoidal rule and Simpson’s rule

Similar bounds can be derived for other composite quadrature formulas. For the
partition of [a, b] into m× n subintervals of length ε = (b− a)/mn we find

∣∣∣∣

∫ b

a

f (x)dx − Sm(f )

∣∣∣∣≤
b− a

mε
Em(ε), (3.16)

where the numbers Em(ε) are listed in Table 3.2. But now Mm in this table denotes
the supremum of |f (m)| on the integration interval. Let us calculate and compare
four approximations to the integral of exp(x) from 0 to 1: with the rectangle rule,
the trapezoidal rule, the Simpson rule and the Monte Carlo method. The latter will be
explained in Sect. 3.2. For the numerical approximations we applied the following
composite quadrature formulas:

rectangle rule:
n−1∑

i=0,1,2

εf (xi),

trapezoidal rule:
n−1∑

i=0,1,2

ε

2

(
f (xi)+ f (xi+1)

)
, (3.17)

Simpson’s rule:
n−2∑

i=0,2,4

ε

3

(
f (xi)+ 4f (xi+1)+ f (xi+2)

)
.

Recall that in the last formula n must be even. The interpolations used in these
approximations are sketched in Fig. 3.2. With the program 1dintegral.c on
p. 42 one can estimate the definite integral

∫ 1

0
dx ex with ε ∈ {

10−n|n= 1,2, . . . ,6
}

(3.18)

with the help of Simpson’s rule. With a slight modification of the code we are able to
integrate with the other quadrature formulas as well. The following table compares
the results obtained with the piecewise constant, linear or quadratic interpolations.
For Simpson’s rule we observe a rapid convergence to the exact value 1.7182818.
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Table 3.3 Convergence of
different methods. The
integer n is defined in (3.18)

n, logM Rectangle Trapezoidal Simpson Monte Carlo

1 1.633799 1.719713 1.718283 1.853195

2 1.709705 1.718296 1.718282 1.793378

3 1.717423 1.718282 1.718282 1.720990

4 1.718196 1.718282 1.718282 1.711849

5 1.718273 1.718282 1.718282 1.719329

6 1.718281 1.718282 1.718282 1.718257

3.2 Monte Carlo Integration

The Monte Carlo method was presumably invented by STANISLAW ULAM. He de-
veloped this method in 1946 while he was thinking about the probability of profit
for solitaire:

The first thoughts and attempts I made to practice [the Monte Carlo Method] were suggested
by a question which occurred to me in 1946 as I was convalescing from an illness and
playing solitaires. The question was what are the chances that a Canfield solitaire laid out
with 52 cards will come out successfully? After spending a lot of time trying to estimate
them by pure combinatorial calculations, I wondered whether a more practical method than
“abstract thinking” might not be to lay it out say one hundred times and simply observe and
count the number of successful plays. . . .

A few years later the method was applied to the problem of neutron diffusion which
could not be solved analytically [7]. Of utmost importance in physics is the applica-
tion of the Monte Carlo method to estimate high-dimensional integrals. For an nice
introduction to this method see the review [8].

A basic algorithm to estimate the integral of a function f :G→R could be:

• generate M uniformly distributed points {x1, . . . , xM} in G,
• compute the function value f (xi) for every point xi, i = 1, . . . ,M ,
• compute the mean value

I (M)= Vol(G)

M

M∑

i=1

f (xi). (3.19)

For any Riemann integrable function the mean I (M) converges for large M to the
integral. For the exponential integral in (3.18) we calculated the mean for M =
10,100, . . . and the results are contained in the last column of Table 3.3. We used
the simple Monte Carlo program listed on p. 42. In line 38 of the code the random
number generator is called to generate a random number in [0,1].

Figure 3.3 compares the convergence behavior of the rectangle and Simpson
quadrature formulas and of the simple Monte Carlo integration. Simpson’s integra-
tion rule, applied to the exponential function, agrees with the exact result in 1 ppm
already for a partitioning of [0,1] in ten subintervals. When we consider the prob-
lem of numerical integration over n-dimensional domains,
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Fig. 3.3 Convergence of
different integration methods:
rectangle rule, trapezoidal
rule and Monte Carlo
integration

I =
∫

G

dq1 · · ·dqn f (q1, . . . , qn)≡
∫

G

dnq f (q) (3.20)

then an obvious strategy is to apply a rule such as Simpson’s rule in each dimen-
sion, creating what is called a product rule. But any product rule is prohibitively
time-consuming when n is large. As an example, consider fixed integration limits 0
and 1 as well as a fixed distance ε between the sampling points for variable dimen-
sion n of the integral. Then the number of nodes is equal to ε−n and the computing
time is proportional to this number. To estimate this time we choose a coarse parti-
tion of the interval [0,1] with ε = 0.1 for which the number of sampling points is
∼10n. Calculating the contribution of one node takes approximately 10−7 seconds
of CPU-time such that the numerical integration of a 12-dimensional integral takes
approximately a whole day. Nevertheless, there are other ways of tackling high-
dimensional integrals, as demonstrated by TRAUB and PASKOV when they treated
a mathematical finance problem from Wall Street as an integration problem over
the 360-dimensional unit cube [9]. They used what nowadays is called quasi-Monte
Carlo method, a deterministic algorithm which is widely used in the financial sector
to estimate financial derivatives. For reviews on this potentially interesting develop-
ment see [10, 11].

3.2.1 Hit-or-Miss Monte Carlo Method and Binomial Distribution

We wish to estimate the value of a definite integral I = ∫
dnx f (x) with stochastic

means. First we transform both the coordinates and function such we are dealing
with an integration problem of a function 0 ≤ f ≤ 1 over the n-dimensional unit
cube. We are not touching the problem of how best to transform a given problem to
the unit cube. Let us first consider a one-dimensional integral of a function on the
unit interval. The integral is equal to the area below the graph of f , see Fig. 3.4.
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Fig. 3.4 The gray area
underneath the graph of f is
proportional to the relative
frequency of hits when
shooting on the unit square

How can we calculate this area with probabilistic means? From a random number
generator which generates uniformly distributed numbers on the unit interval we
take two random numbers x and y. Now we shoot on the unit square in Fig. 3.4.
A hit of the shaded area is then identified with y ≤ f (x). The probability for a hit is

p = number of hits

number of trials
= gray area

total area
= I

1
= I. (3.21)

Let us repeat shooting M times such that the number of hits is in {0, . . . ,M}. For
statistically independent shots the probability for k hits is given by the binomial
distribution

P(M,k)=
(
M

k

)
pk(1− p)M−k with

M∑

k=0

P(M,k)= 1. (3.22)

The binomial coefficient in this distribution function counts the number of ways of
picking k hits from M shots. The distribution (3.22) describes a bell-shaped curve,
localized at pM . The generating function for the moments of the binomial distribu-
tion can be computed easily:

Z(t)= 〈
etk

〉=
M∑

k=0

ektP (M,k)= (
etp+ (1− p)

)M
. (3.23)

Being the sum of all probabilities Z(0) = 〈1〉 = 1. The expectation values of arbi-
trary powers of k are obtained by differentiating the generating function with respect
to t .

For example, for a very large number of shots the relative frequency of hits is

〈
k

M

〉
= 1

M

M∑

k=0

kP (M,k)= 1

M

dZ

dt

∣∣∣∣
t=0

= p, (3.24)



34 3 High-Dimensional Integrals

Table 3.4 Convergence behavior of different methods. M is defined as stated in (3.19)

log10 M p I − p σ pimpr I − pimpr σimpr

1 0.500000 −0.123630 0.158114 0.333333 0.043037 0.000000

2 0.330000 0.046370 0.047021 0.363333 0.013037 0.017059

3 0.399000 −0.022630 0.015485 0.377333 −0.000963 0.006486

4 0.378900 −0.002530 0.004851 0.376833 −0.000463 0.002040

5 0.376570 −0.000200 0.001532 0.377693 −0.001323 0.000651

6 0.374857 0.001513 0.000484 0.376305 0.000065 0.000203

7 0.376273 0.000097 0.000153 0.376303 0.000067 0.000064

as expected. The relative frequency has mean square
〈
k2

M2

〉
= 1

M2

d2Z

dt2

∣∣∣∣
t=0

= p

M
+

(
1− 1

M

)
p2. (3.25)

More interesting is the variance of the relative frequency,

σ 2 = 1

M2

〈(
k − 〈k〉)2〉= 1

M2

d2 logZ

dt2

∣∣
∣∣
t=0

= p(1− p)

M
. (3.26)

Note that the standard deviation σ decreases only slowly with the number of trials,
σ ∼M−1/2 and this slow decrease is typical for probabilistic methods.

Numerical Experiment

An estimation of the probability p is given by the relative frequency of hits in M

trials. Table 3.4 contains estimations p of the definite integral

I =
∫ 1

0
f (x)≈ 0.376370, f (x)= x2ex

1− x + xex
, (3.27)

for an increasing number of trials M and of the corresponding spreads σ around
the estimated values. The numbers in columns 2,3 and 4 were calculated with the
program hitandmissarea.c, listed on p. 43.

The simple hit-or-miss method can be improved with little effort. Observe that
the variance decreases when p approaches 0 or 1. As a warning we mention that at
the same time the relative error increases. Now we choose an analytically integrable
function g ≤ f , which approximates f rather well. Thus the first integral in

I =
∫ (

f (x)− g(x)
)

dx
︸ ︷︷ ︸

small

+
∫

g(x)dx
︸ ︷︷ ︸

known

(3.28)

is small and the integrand lies between 0 and 1. It is estimated by means of the hit-
or-miss method with reduced variance. For the function f in (3.27) we may choose
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g(x)= x2 with
∫

g(x)dx = 1/3.

With this reweighing technique we obtain improved estimates and smaller variances
for integrals of interest. The last three columns in Table 3.4 contain the estimates
and standard deviations for the improved method for various values of trials M .
These values were computed with the program hitandmissarea.c on p. 43.

3.2.2 Sum of Random Numbers and Gaussian Distribution

The program gaussdistr.c on p. 44 generates the sum s = x1 + x2 + · · · + xn
of n equally distributed and independent random numbers on the unit interval. The
sum itself is a random number with values in [0, n] and generating function

Z(t)= 〈
ets

〉=
∫

In
dnx et (x1+···+xn) =

(∫ 1

0
dx etx

)n

= t−n
(
et − 1

)n
. (3.29)

We find the expected result for the mean value of s

m= 〈s〉 = dZ

dt

∣∣∣∣
t=0

=
∫

In
dnx(x1 + · · · + xn)= n

2
. (3.30)

Similarly, we obtain for the square of the statistical spread

d2 logZ

dt2

∣∣∣∣
t=0

= σ 2 = 〈
s2〉−m2 = n

12
. (3.31)

According to the law of large numbers1 we obtain the Gaussian distribution

Ps = 1√
2πσ

e−(s−m)2/2σ 2
. (3.32)

The program calculates the distribution of s for n = 10,50,100. For each n a his-
togram is generated from one million trials. Rescaling s with n leads to a maximum
of the distribution at s/n = 1/2 and a variance of 1/12n. Figure 3.5 compares the
distributions obtained by Monte Carlo simulation and the Gaussian distributions
(3.32).

The inequality (3.57) describes the probability that the random number s/n de-
viates more than δ from its mean value. In the present case it reads

P

[∣∣∣∣
s

n
− 1

2

∣∣∣∣≥ δ

]
≤ 1

12nδ2
. (3.33)

1For a discussion and proof of this law see p. 40.
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Fig. 3.5 The sum s of n random numbers forms a Gaussian distribution for large n. The limit
distribution of the rescaled random variable s/n has the mean value 1/2. Furthermore the square
of the statistical spread is 1/12n

3.3 Importance Sampling

Numerical algorithms approximate integrals by finite sums,

∫
dnq f (q)∼

M∑

μ=1

f (qμ)�qμ.

In case of high-dimensional integrals and slowly varying functions f it may be ad-
vantageous to choose the sampling points qμ randomly. But in physical problems
we are often confronted with integrands that vary by several orders of magnitude
for different points in which case we may waste computing time at sampling points
with small integrands. The idea of importance sampling, according to which one
preferably samples points with large integrands, is incorporated in many stochas-
tic algorithms for calculating high-dimensional integrals. The best-known examples
are based on the Metropolis algorithm. Since the sampling points lie primarily in
regions with high values of f , the variance of the estimate of the integral decreases.

To implement this idea we choose a function g(q) for which the integral is known
analytically and which represents a good approximation of the function f (q). We
write

∫ 1

0
f (q)dnq =

∫ 1

0
dnq g(q)

f (q)
g(q)

. (3.34)

Through the generation of random points qμ distributed according to g(q)dnq we
come to the estimation

∫
f (q)dnq ≈ f̄ = 1

M

M∑

μ=1

f (qμ)
g(qμ)

, (3.35)
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whereupon we performed M “measurements”. Note that the reweighed summands
vary only little. But keep in mind that the integral of g(q) must be known in order
to extract g-distributed random numbers.

Now let us consider expectation values in lattice field theories,

〈O〉 ≈ 1

Z

∫
DqO(q)e−S(q), Dq = dq1 · · ·dqn, Z =

∫
Dqe−S(q),

(3.36)

for which we would like to choose the Boltzmann distribution

P(q)= 1

Z
e−S(q) (3.37)

as function g. Then we only need to average over the in many cases slowly varying
(in contrast to P ) observables O(q):

〈O〉 ≈ Ō = 1

M

M∑

μ=1

O(qμ). (3.38)

Here M denotes the number of generated points qμ in configuration space. Thus the
Monte Carlo estimation Ō of the mean value of O represents an arithmetic average.

We are confronted with the following algorithmic problem: The n-dimensional
integrals

〈O〉 =
∫

DqO(q)P (q),
∫

DqP(q)= 1, (3.39)

with fixed probability density P should be approximated for varying observables O .
We therefore need algorithms which generate P -distributed points q1,q2, . . . in the
n-dimensional domain of integration. The following Metropolis algorithm [7] gen-
erates a series of such points:

1. Start with μ= 0 and an arbitrary initial point qμ.
2. Choose a point q′ at random and in addition a random number r ∈ [0,1].
3. If P(q′)/P (qμ) > r , set qμ+1 = q′. Otherwise set qμ+1 = qμ.
4. Increase μ by one and repeat steps 2,3 and 4.

The resulting points {qμ} are distributed according to P(q) and

Ō = 1

M

M∑

μ=1

O(qμ) (3.40)

represents an estimate of 〈O〉 which converges to 〈O〉 for large values of M . In
lattice field theories the points qμ are called lattice configurations.

The program samplingarea.c on p. 45 estimates the definite integral

I = 128 ·
∫ 1

0 dx dy dz x3y2z exp(−x2 − y2 − z2)
∫ 1

0 dx dy dz exp(−x2 − y2 − z2)
= 128 · 〈x3y2z

〉≈ 2.4313142
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Table 3.5 Calculation of the three-dimensional integral via the Metropolis algorithm

M 5 000 1 0000 15 000 20 000 25 000 30 000 35 000

Ī 2.33113 2.31536 2.33432 2.38934 2.3568 2.34805 2.35253

E 0.10018 0.11595 0.09699 0.04197 0.07449 0.08327 0.07878

M 40 000 45 000 50 000 55 000 60 000 65 000 70 000

Ī 2.34528 2.34193 2.35193 2.35089 2.35659 2.35952 2.36130

E 0.08603 0.08939 0.07938 0.08043 0.07473 0.07179 0.07001

M 75 000 80 000 85 000 90 000 95 000 100 000 1 000 000

Ī 2.36969 2.37196 2.36937 2.38248 2.38742 2.38448 2.43686

E 0.06162 0.05935 0.06194 0.04884 0.04390 0.04683 −0.00555

via the Metropolis algorithm with the exponential function, normalized by the in-
tegral in the denominator, as distribution P . We observe a slow convergence to the
exact result with errors of the order 1/

√
M . Table 3.5 contains the computed esti-

mates for various M . The last entry results from 106 Monte Carlo iterations and has
an error of 0.00555.

3.4 Some Basic Facts in Probability Theory

Knowing the basic facts about probability theory is of course useful in any statistical
approach to physical problems. Thus it is worth summarizing the main concepts of
probability and statistics. The axiomatic approach to this theory was developed by
KOLMOGOROW in the 1930’s. See [12] for an introduction to probability, and [13]
for an introduction to measure theory.

The set of elementary events, the sample space, is denoted by Ω . A general event
is a subset of Ω and the set of events is the event space Σ . The measure P :Σ →
[0,1] is a probability measure in case P(Ω)= 1. The triple (Ω,Σ,P ) consisting of
a sample space, an event space and a probability measure form a probability space.

The probability measure should fulfill the following axioms:

• The probability P(A) of an event A⊂Ω is in [0,1].
• The probability of some elementary event occurring in Ω is P(Ω)= 1.
• The probability of the union of countably many disjoint events is equal to the sum

of the probabilities of the individual events (σ additivity):

P(A1 ∪A2 ∪ · · ·)=
∑

P(Ai) if Ai ∩Aj = ∅.
From Kolmogorov axioms one concludes

P(Ω\A)= 1− P(A) and P(A1 ∪A2)= P(A1)+ P(A2)− P(A1 ∩A2).
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The incidental result X :Ω → R is called random variable with expectation value
(mean value)

〈X〉 =
∑

w∈Ω
X(w)P [w] =

∑

x∈X(Ω)

x
∑

w∈Ω
X(w)=x

P [w] =
∑

x∈X(Ω)

xPX(x), (3.41)

wherein P [w] denotes the probability for the event w and

PX(x)= P
(
X−1(x)

)
(3.42)

represents the probability for the random variable X to assume the value x. The
mean value of repeated measurements of X is simply 〈X〉 and the expression

PX(Δ)=
∑

x∈Δ
PX(x). (3.43)

is interpreted as probability for finding an event for which X has a value in Δ. If X
is a real-valued random variable, then PX is the probability density and we have

PX(Δ)=
∫

Δ

PX(x)dx. (3.44)

For a continuous function f the expectation value of the random variable f (X) is
〈
f (X)

〉=
∑

w∈Ω
f
(
X(w)

)=
∑

x∈X(Ω)

f (x)PX(x). (3.45)

The average value of any linear combination of random variables is the correspond-
ing linear combination of individual averages,

〈X〉 = 〈X1〉 + · · · + 〈XN 〉. (3.46)

The random variables are called independent if the probability of the events w with
Xi(w)= xi factorizes for arbitrary x1, . . . , xN :

P
({
w|X1(w)= x1, . . . ,XN(x)= xN

})= PX1(x1) · · ·PXN
(xN). (3.47)

The generating function of independent random variables factorizes,
〈
ei(t1X1+···+tNXN)

〉=
∑

w

ei(t1x1+···+tN xN )P
({
w|X1(w)= x1, . . . ,XN(x)= xN

})

=
∑

x1,...,xN

N∏

k=1

eitkxkPXk
(xk)=

〈
eit1X1

〉 · · · 〈eitNXN
〉
. (3.48)

For t = t1 = · · · = tN we obtain the following useful relation for the generating
function of the connected correlations of independent random variables,

log
〈
eit (X1+···+XN)

〉=
N∑

i=1

log
〈
eitXi

〉
. (3.49)

Differentiating twice with respect to t at t = 0 we conclude that the variance of the
sum of independent random variables Xi is equal the sum of the variance of Xi ,
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Var[X] =
N∑

i=1

Var[Xi], Var[X] ≡ 〈
X2〉− 〈X〉2 = 〈

(�X)2
〉
, (3.50)

where �X denotes the random variable X− 〈X〉.

Theorem 3.2 (Markov’s theorem) Let X be a random variable which assumes non-
negative values only. Then for all t ∈R

+

P [X ≥ t] ≤ 1

t
〈X〉. (3.51)

The proof of Markov’s theorem is quite simple:

〈X〉 =
∑

x≥0

x · PX(x)≥
∑

x≥t
x · PX(x)≥

∑

x≥t
t · PX(x)

= t
∑

x≥t
PX(x)= t · P [X ≥ t].

This result leads to the useful Chebyshev inequality for the average deviation of a
real-valued random number from its average value.

Theorem 3.3 (Chebyshev’s theorem) Let X be a random variable and t ∈R
+. Then

P
[|�X| ≥ t

]≤ 1

t2
Var[X]. (3.52)

Proof

P
[|�X| ≥ t

]= P
[
(�X)2 ≥ t2

] (3.51)≤ Var[X]
t2

.

Another very important theorem (we already mentioned it) is the �

Theorem 3.4 (Law of large numbers) Given a random variable X and arbitrary,
but fixed numbers ε, δ > 0. Define

K := Var[X]
ε · δ2

= const., (3.53)

let X1, . . . ,XN be independent random variables with the same distribution as X
and define Z := (X1 + · · · +XN)/N . Then the following bound holds:

P
[|�Z| ≥ δ

]≤ ε. (3.54)

Proof Linearity of expectation values and (3.50) imply

〈Z〉 = 1

N

∑
〈Xi〉 = 〈X〉 and Var[Z] = 1

N2

∑
Var[Xi] = Var[X]

N
. (3.55)

The latter inequality is interesting in its own. It is the well known square root law
for the relative fluctuations √

Var[Z]
〈Z〉 ≤ 1

N

√
Var[X]
〈X〉 (3.56)
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and it means that the scale of the relative fluctuations of Z is of order O(N−1/2). It
implies that for a large number of random variables Xi (trials) we may neglect the
fluctuations. In other words, the accuracy of a statistics tends to improve with the
number of trials.

Combining Chebyshev’s inequality with the result (3.55) leads to the bound

P
[|�Z| ≥ δ

]≤ Var[Z]
δ2

= Var[X]
N · δ2

≤ ε. (3.57)

Now let X1, . . . ,XN be a series of independent and identically distributed random
variables with vanishing mean and covariance matrix 〈XiXj 〉 = δij σ

2. Furthermore
we define the random variable

YN := 1√
N

N∑

i=1

Xi. (3.58)

The generating function for YN is given by

〈
eitYN

〉=
N∏

i=1

〈
exp

(
i
t√
N
Xi

)〉

=
〈
1+ i

t√
N
X1 − 1

2

t2

N
X2

1 +
1

O(N3/2)

〉N
N→∞−→ exp

(
−1

2
t2σ 2

)
.

On the other hand the generating function of a Gaussian random variable with mean
m and variance σ 2 is given by

1√
2πσ

∫
dx e−(x−m)2/2σ 2

eitx = exp

(
imt − 1

2
t2σ 2

)
.

It follows at once that for large N the random variables YN are Gaussian with mean
0 and variance σ 2. �

3.5 Programs for Chap. 3

The C-programs

• 1dintegral.c
• hitandmissarea.c
• gaussdistr.c
• samplingarea.c

were mentioned and used in Chap. 3. They are listed and explained in this section.
The first program 1dintegral.c in Listing 3.1 calculates the definite integral of
a function on the unit interval with Simpson’s rule for lattice constants

ε ∈ {
10−n|n= 1,2, . . . ,6

}

and with the Monte Carlo method. The function is defined in line 10 of the listing.
The C-program in Listing 3.2 computes the area below a given function with the

help of the hit-or-miss Monte Carlo method in a rather simple way. The function is
defined in line 9 of the listing.
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Listing 3.1 1-dimensional integrals

1 /*program 1dintegral.c
2 /*numerical integration of f(x) from alpha to beta
3 /*with Simpson algorithm and Monte Carlo method*/
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <math.h>
7 #include <time.h>
8
9 /*function to be integrated*/

10 double f(double x)
11 {return exp(x);}
12 /*random number between 0 and 1*/
13 double randa(void)
14 {return (double)rand()/((double)RAND_MAX);}
15 int main(void)
16 {
17 double eps,sum,int_simpson,int_monte_carlo,x0,x1,x2;
18 double alpha=0,beta=1; /*limits of integration*/
19 long i,N;
20 srand ( time(NULL) );
21 printf("log_10(N)\t int_simpson\t int_monte_carlo\n");
22 for (N=10;N<1000001;N*=10)
23 {
24 eps=(beta-alpha)/N;
25 /*simpson rule*/
26 sum=0;
27 for (i=0;i<N-1;i=i+2)
28 {x0=alpha+eps*i;x1=x0+eps;x2=x1+eps;
29 sum=sum+(f(x0)+4.0*f(x1)+f(x2))/3.0;}
30 int_simpson=sum*eps;
31 /*Monte Carlo method*/
32 sum=0;
33 for (i=0;i<N;i++)
34 {x0=randa();sum=sum+f(x0);}
35 int_monte_carlo=eps*sum;
36 printf("%8.0f \t%f \t%f \n",
37 log10(N),int_simpson,int_monte_carlo);
38 }
39 return 0;
40 }

The program in Listing 3.3 computes the distribution of the sum s of 10,50 and
100 random numbers r ∈ [0,1]. Each time we perform one million trials. The values
of the stochastic variable s form a histogram, which is saved in the array mean[100].
Furthermore we rescale the random variable s with 2m such that the maximum of
the distribution lies at s/(2m)= 1/2.

The program in Listing 3.4 applies the technique of importance sampling. There
we only consider points associated with large integrands. Thus the variance of a
single estimate is reduced. The program samplingarea.c computes the proper
integral
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Listing 3.2 hit_or_miss

1 /*program hitormissarea.c
2 /*integration of f(x) with hit-or miss method*/
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <math.h>
6 #include <time.h>
7 #define M 10000001 /*number of attempts*/
8 double f(double x) /*function to be integrated*/
9 {return x*x*exp(x)/(1-x+x*exp(x));}

10 double g(double x) /*function for improved method*/
11 {return x*x*exp(x)/(1-x+x*exp(x))-x*x;}
12 int main(void)
13 {
14 double sum1,sum2,I1,I2,sig1,sig2,x,y;
15 long n,m;
16 srand48(time(NULL));
17 printf("attemps\t\t p\t\t integ-p\t sigma_1\t");
18 printf("p_imp\t\t integ-p_imp\t sigma_2\n");
19 for (m=10;m<M;m*=10)
20 {sum1=0;sum2=0;
21 for (n=1;n<m+1;n++)
22 {x=drand48();y=drand48();
23 if (y<f(x)) sum1=sum1+1;
24 if (y<g(x)) sum2=sum2+1;
25 };
26 I1=sum1/m;I2=sum2/m;
27 sig1=sqrt(I1*(1-I1)/m);sig2=sqrt(I2*(1-I2)/m);
28 n=(int)log10(m);
29 printf("%8ld\t%8.5f\t%8.5f\t%8.5f\t%8.5f\t%8.5f\
30 t%8.5f\n",
31 m,I1,0.376370-I1,sig1,1/3.0+I2,0.043037-I2,sig2);
32 };
33 return 0;
34 }

128 ·
∫ 1

0 dx dy dz x3y2z exp(−x2 − y2 − z2)
∫ 1

0 dx dy dz exp(−x2 − y2 − z2)
≈ 2.4313142

with the help of the Metropolis algorithm.

3.6 Problems

3.1 (Numerical calculation of integrals) Calculate the exponential integral
∫ 1

0
dxex

with the help of Simpson’s rule. Compare your result with the exact one.
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Listing 3.3 Gauss distribution

1 /*Programm gaussdistr.c
2 /*sum of random numbers from the interval [0,1]*/
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <math.h>
6 #include <time.h>
7 #define PI 3.1415926
8 #define numbersadded 50 /*number of added random numbers*/
9 #define M 1000000 /*number of MC iterations*/

10 int main(void)
11 { double sum,aux=6.0*numbersadded,mean[100];
12 double dM=100.0/(double)M; /*scaling factor 100*/
13 long i,j,sumi;
14 /*initial values*/
15 for (i=0;i<numbersadded;i++) mean[i]=0;
16 sum=0;srand48(time(NULL));
17 /*repeat experiment M times*/
18 for (i=0;i<M;i++)
19 {sum=0;
20 /*sum of random numbers in each experiment*/
21 for (j=0;j<numbersadded;j++)
22 sum=sum+drand48();
23 /*100 bins for histogram*/
24 sumi=(int)(0.5+100*sum/numbersadded);
25 ++mean[sumi];
26 };
27 printf("maximum at bin = 49.5\n");
28 printf("bin\t estimate\t Gaussian dist\n");
29 for (i=30;i<71;i=i+2)
30 {sum=i-50;
31 printf("%li\t%8.5f\t%8.5f\n",
32 i,mean[i]*dM,sqrt(aux/PI)*exp(-aux*sum*sum*dM));
33 };
34 return 0;
35 }

3.2 (Error of Simpson formula) For the function

f (x)= ex cos(x) in [0,π]
compute the minimum number of intervals such that the error of the composite
Simpson formula is less than 10−4.

3.3 (Volume of n-dimensional unit ball) Write a program to find the volume of an n-
dimensional ball using the Monte Carlo technique. The volume will be the number
of points with the sum,

n∑

j=1

x2
j < 1
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Listing 3.4 sampling area

1 /*pogram samplingarea.c
2 /*three-dimensional integral with importance sampling.*/
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <math.h>
6 #include <time.h>
7 #define M 100000 /*number of measured MC-iterationen*/
8 #define MA 1000 /*every MA’th configuration is measured*/
9 /*distribution*/

10 double P(double *x)
11 {return exp(-x[0]*x[0]-x[1]*x[1]-x[2]*x[2]);}
12 /*function to be integrated*/
13 double f(double *x)
14 {return 128.0*x[0]*x[0]*x[0]*x[1]*x[1]*x[2];}
15 int main(void)
16 { double integral,sum,x[3],y[3];
17 long i,j;
18 srand48(time(NULL));
19 sum=0; x[0]=drand48();x[1]=drand48();x[2]=drand48();
20 for (i=1;i<M+1;i++)
21 { for(j=0;j<MA;j++)
22 { y[0]=drand48(); y[1]=drand48(); y[2]=drand48();
23 if (P(y)>P(x)*drand48() )
24 { x[0]=y[0];x[1]=y[1];x[2]=y[2];};
25 };
26 sum=sum+f(x);integral=sum/i;
27 if (i%5000==0)
28 printf("i = %ld\t integral = %.5f\t error = %8.5f\n",
29 i,integral,2.4313142-integral);
30 };
31 return 0;
32 }

divided by the total number of points in the region from which the xi are selected.
A convenient region is the n-cube defined by

−1 < xj < 1, j = 1, . . . , n

having volume 2n.

3.4 (Particle diffusion) A particle starts at the origin in two dimensions and af-
ter each time-intervals jumps with equal probability 1/4 to one of the neighboring
points. After the first jump the particle is at one of the points (±1,0) or (0,±1).
Write a program to jump a large number of times, and print out the distance r of
the particle from its starting point after all jumps are completed. Theory predicts
that the expected value of r is K ×√

n after n jumps. Start the program sufficiently
many times so that you get an’experimental’ value for the constant K .
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Chapter 4
Monte Carlo Simulations in Quantum
Mechanics

This chapter provides an introduction to particular Markov processes which obey
the detailed balance condition. We explain the Metropolis algorithm—still the
workhorse in many simulations—the heat bath algorithm and the hybrid Monte
Carlo algorithm. We will apply these algorithms to simulate the anharmonic os-
cillator. Later in this book we shall use these algorithms to analyze nonperturbative
aspects of spin-systems and quantum field theories.

4.1 Markov Chains

We begin our discussion with a particular realization of the method of “importance
sampling” as introduced in Chap. 3. For simplicity we first consider a system with
a discrete set of configurations {ω}. With an appropriate Markov chain we generate
configurations distributed according to a prescribed probability distribution P(ω).
Later on P will be an equilibrium distribution of a statistical system. A Markov
chain shows one important property: it is a discrete-time process for which the fu-
ture behavior, given the past and the present, only depends on the present and not
on the past. Hence the system has a short-term memory. A Markov chain is charac-
terized by transition probabilities W(ω,ω′)=W(ω→ ω′), which are interpreted as
probabilities for a given configuration ω to make a transition to ω′ in one time-step.
In passing we note that a Markov process is a continuous-time version of a Markov
chain.

Stochastic Matrices and Stochastic Vectors We consider W(ω,ω′) as matrix
elements of a ‘stochastic matrix’ W . If the number of configurations is not finite,
then W is a linear operator. Clearly, the matrix elements of a stochastic matrix must
be positive and normalized:

W
(
ω,ω′)≥ 0 and

∑

ω′
W

(
ω,ω′)= 1. (4.1)

A. Wipf, Statistical Approach to Quantum Field Theory, Lecture Notes in Physics 864,
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The probability for jumping from ω to ω′ during two time-steps is given by the
sum of probabilities of all realizations of this two-step process. This means that the
probability for the transition ω→ ω′ after two time-steps is given by

W(2)(ω,ω′)=
∑

ω1

W(ω,ω1)W
(
ω1,ω

′), (4.2)

where one sums over all intermediate configurations which could have been visited
after one time-step. Similarly, we obtain the probabilities

W(n)
(
ω,ω′)=

∑

ω1···ωn−1

W(ω,ω1)W(ω1,ω2) · · ·W
(
ωn−1,ω

′) (4.3)

for the transitions from ω to ω′ after n steps and conclude that the long-time behav-
ior of the chain is determined by high powers of the stochastic matrix.

A stochastic vector p has non-negative entries pω which add up to 1:
∑

ω

pω = 1. (4.4)

The entry pω represents the probability of finding the system in configurations ω.
In statistical mechanics p is identified with a (mixed) state. In order not to confuse
ω with pω we call ω a configuration and not a state as it is called in textbooks
on Markov chains. A stochastic matrix transforms stochastic vectors into stochastic
vectors:

∑

ω′
(pW)

(
ω′)=

∑

ωω′
pωW

(
ω,ω′)=

∑

ω

pω = 1.

Let us consider the following stochastic matrix of a system with two configurations:

W =
(
a 1− a

0 1

)
, 0 ≤ a ≤ 1. (4.5)

Its eigenvalues are {1, a} and its powers converge exponentially fast to a stochastic
matrix with identical rows,

Wn =
(
an 1− an

0 1

)
n→∞→

(
0 1
0 1

)
.

Later we will prove that for most stochastic matrices the powers Wn converge to a
stochastic matrix with identical rows. A counterexample is given by

W =
(
a 1

2 (1− a) 1
2 (1− a)

0 0 1
0 1 0

)

with 0 ≤ a < 1. (4.6)

The even powers are

Wn =
(
an 1

2 (1− an) 1
2 (1− an)

0 1 0
0 0 1

)

→
(0 1

2
1
2

0 1 0
0 0 1

)

, n even,

and the odd powers read
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Wn =
(
an 1

2 (1− an) 1
2 (1− an)

0 0 1
0 1 0

)

→
(0 1

2
1
2

0 0 1
0 1 0

)

, n odd.

Any stochastic vector p is mapped into

pW 2n n→∞→
(

0,p2 + p1

2
,p3 + p1

2

)
,

pW 2n+1 n→∞→
(

0,p3 + p1

2
,p2 + p1

2

)
.

For a generic p the series pWn approaches exponentially fast a periodic orbit with
period 2. This lack of convergence to a stochastic vector is only possible since every
column of W contains at least one zero. Note that W has the fixed point (0,0.5,0.5)
and that for exceptional stochastic vectors with p2 = p3 the series Wnp converges
to this fixed point.

4.1.1 Fixed Points of Markov Chains

Every stochastic matrix has the eigenvalue 1. The corresponding right-eigenvector
is given by ∼(1,1, . . . ,1)T . But since W acts from the right we are interested in the
left-eigenvector with eigenvalue 1. We follow [1] and consider the series

pn = 1

n

n−1∑

j=0

pWj . (4.7)

Since stochastic vectors form a compact set, the series has a convergent subsequence

1

nk

nk−1∑

0

pWj → P.

We multiply this subsequence by W from the right,

1

nk

nk∑

1

pWj → PW.

In the difference of the last two formulas only two terms in the left-hand sides re-
main and we obtain in the limit nk →∞

1

nk

(
p− pWnk

)→ P− PW.

This leads to the eigenvalue equation

PW = P, (4.8)

which means that every stochastic matrix W has at least one fixed point P, i.e. a
left-eigenvector with eigenvalue 1.
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We now assume that W has at least one column with minimal element greater
than a positive number δ. This means that all configurations can jump with non-
vanishing probability to any given configuration. Stochastic matrices with this prop-
erty are called attractive and for an attractive matrix the series Wnp converges for
any stochastic vector p. Note that W in (4.6) is not attractive and this explains why
the associated Markov chain does not converge. For the proof of convergence we
first note that for two real numbers p and p′ we have

∣∣p− p′
∣∣= p+ p′ − 2 min

(
p,p′

)
,

and this relation implies
∥∥p− p′

∥∥= 2− 2
∑

ω

min
(
pω,p

′
ω

)
(4.9)

for two stochastic vectors. We used the �1-norm ‖p‖ =∑
ω |pω|.

Next we wish to prove that an attractive W acts on vectors Δ = (Δ1,Δ2, . . .)

with

‖Δ‖ ≡
∑

|Δω| = 2 and
∑

Δω = 0 (4.10)

in a contractive way. Let us assign the stochastic vector eω to each ω which repre-
sents the probability distribution for finding ω with probability one. This means that
all entries of eω vanish with the exception of entry ω, which is 1. The stochastic vec-
tors {eω} form an orthonormal basis. In a first step we prove that W is contractive for
difference vectors eω−eω′ . Thus we apply the identity (4.9) to the stochastic vectors
eωW and eω′W , i.e. to rows of W belonging to ω and ω′. In case of an attractive W
we find for ω �= ω′

‖eωW − eω′W‖ = 2− 2
∑

ω′′
min

{
W

(
ω,ω′′),W

(
ω′,ω′′)}

≤ 2− 2δ = (1− δ)‖eω − eω′ ‖︸ ︷︷ ︸
=2

with 0 < δ < 1. (4.11)

This already proves that W is contractive on difference vectors eω − eω′ . We used
the inequality

min
ω′′

{
W

(
ω,ω′′)W

(
ω′,ω′′)}≥ min

{
W

(
ω,ω∗)(W

(
ω′,ω∗)}≥ δ,

where ω∗ belongs to the particular column of W with elements greater than or equal
to δ. Now we shall prove the contraction property for all vectors Δ in (4.10). Adding
and subtracting the relations

‖Δ‖ =
∑

ω:Δω≥0

Δω −
∑

ω:Δω<0

Δω = 2 and
∑

ω:Δω≥0

Δω +
∑

ω:Δω<0

Δω = 0,

we extract the values of the individual sums,
∑

Δω≥0

Δω = 1 and
∑

Δω<0

Δω =−1. (4.12)
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To keep the notation simple we denote in the following formulas the non-negative
elements of Δ by Δω and the negative elements by Δω′ . Note that the index sets {ω}
and {ω′} are disjunct. With (4.12) we obtain

‖Δ‖ = 2 =−2
∑

Δω

∑
Δω′ = −

∑
ΔωΔω′ ‖eω − eω′‖︸ ︷︷ ︸

=2

, (4.13)

where in the last step we took into account ω �= ω′. Now we use the simple relations
∑

Δωeω =−
∑

Δω′
∑

Δωeω,
∑

Δω′eω′ = +
∑

Δω

∑
Δω′eω′ ,

which follow from (4.12), to bound the norm of ΔW :

‖ΔW‖ =
∥∥∥
∑

ΔωeωW +
∑

Δω′eω′W
∥∥∥=

∥∥∥−
∑

Δω′Δω(eω − eω′)W
∥∥∥

≤−
∑

ΔωΔω′
∥∥(eω − eω′)W

∥∥≤−
∑

ΔωΔω′ ‖eω − eω′ ‖(1− δ),

(4.14)

where in the last step we applied the inequality (4.11). A comparison with formula
(4.13) proves the desired inequality

‖ΔW‖ ≤ (1− δ)‖Δ‖, (4.15)

for vectors which satisfy the conditions (4.10). Since this inequality is linear in Δ it
also holds for vectors which do not fulfill the condition ‖Δ‖ = 2. This shows that
a stochastic matrix W is contractive on all vectors the elements of which add up to
zero and especially on differences of any two stochastic vectors.

Iterating the inequality (4.15) yields
∥∥ΔWn

∥∥≤ (1− δ)n‖Δ‖. (4.16)

Let us apply this estimate to the difference vector p− P, where P is a fixed point of
the Markov chain and p is an arbitrary stochastic vector. The elements of p−P add
up to zero such that the bound in (4.16) applies,

∥∥(p− P)Wn
∥∥= ∥∥pWn − P

∥∥ n→∞→ 0,

or, equivalently

pWn n→∞→ P. (4.17)

For the particular stochastic vectors eω the left-hand side is the row of limn→∞Wn

=W eq belonging to ω and we conclude that W eq has identical rows,

W eq(ω,ω′)= lim
n→∞Wn

(
ω,ω′)= Pω′ . (4.18)

To summarize, for an attractive W the situation is similar to that for the stochastic
matrix in (4.5): the series Wnp converges to a fixed point and all elements in one
single column of W eq = limn→∞Wn are equal.
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It is easy to show that for an attractive W the fixed point P is unique. Indeed, if
there would exist a second fixed point P′, then

P ′
ω′ =

∑

ω

P ′
ωW

(
ω,ω′)= lim

n→∞
∑

ω

P ′
ωW

n
(
ω,ω′) (4.18)=

∑

ω

P ′
ωPω′ = Pω′

would hold and this proves the uniqueness of the fixed point. With (4.18) we also
conclude that for an attractive W the stochastic matrix W eq is unique.

The generalization of these results to continuous systems with infinitely many
configurations should be self-evident. As an example, consider a mechanical system,
the pure states of which correspond to the points q ∈ R

n. We now have to deal
with probability densities p(q) instead of stochastic vectors. The sums over discrete
indices ω turn into integrals over the continuous variables q. The conditions (4.1)
now read

W
(
q,q′

)≥ 0 and
∫

Dq′ W
(
q,q′

)= 1, (4.19)

and the fixed point condition (4.8) takes the form

P
(
q′
)=

∫
DqP(q)W

(
q,q′

)
. (4.20)

In statistical physics and quantum field theory at finite temperature the fixed point
P(q) corresponds to the canonical ensemble and we look out for Markov chains
with this equilibrium distribution as fixed point.

4.2 Detailed Balance

The condition of detailed balance is a simple and physically well-founded constraint
on a Markov chain which implies the fixed point equation (4.8). Detailed balance
means a balance between any two configurations: the equilibrium probability for ω,
multiplied by the jump probability from ω to ω′ is equal to the equilibrium proba-
bility of ω′ multiplied by the jump probability from ω′ to ω,

PωW
(
ω,ω′)= Pω′W

(
ω′,ω

)
. (4.21)

If in equilibrium the configuration ω is more likely occupied than the configuration
ω′, then the transition amplitude from ω to ω′ is less than the amplitude for the
reverse transition.

The condition of detailed balance guarantees that P is a fixed point of the chain,
∑

ω

PωW
(
ω,ω′)=

∑

ω

Pω′W
(
ω′,ω

)= Pω′ , (4.22)

but it does not fix W uniquely. We may use the residual freedom to choose simple
and efficient algorithms. In particular the fast Metropolis and heat bath algorithms
are universally applicable and are often used. For statistical systems which can be
dualized there exist the more efficient cluster algorithms, which do not suffer from
the problem of the so-called “critical slowing down”. These and other Monte Carlo
algorithms will be introduced and applied in this book. More material can be found
in the textbooks [2–4].
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4.2.1 Acceptance Rate

The probabilities W(ω,ω) of not jumping are not constrained by the condition of
detailed balance. Thus we may change the probabilities W(ω,ω′) for the transition
between different configurations without violating the sum rule (4.1) if we only
readjust the unconstrained W(ω,ω).

We factorize the transition probability into the product of a test probability and
an acceptance rate

W
(
ω,ω′)= T

(
ω,ω′)A

(
ω,ω′), (4.23)

where T (ω,ω′) is the probability of testing the new configuration ω′ with given ini-
tial configuration ω. If ω′ is tested then the quantity 0 ≤ A(ω,ω′)≤ 1 corresponds
to the probability that the transition to ω′ is accepted. Note that the conditions

T (ω,ω′)A(ω,ω′)
T (ω′,ω)A(ω′,ω)

= Pω′

Pω
(4.24)

do not fix the ratios of acceptance rates. A good Monte Carlo algorithm requires the
best possible choice for these rates. For too small rates only a tiny fraction of jumps
is accepted and the system is stuck in its initial configuration. We waste valuable
computing time without passing through the configuration space. Thus, in many
cases one sets the greater of two acceptance rates A(ω,ω′) and A(ω′,ω) equal to 1.
The smaller rate is chosen such that the condition (4.24) is satisfied.

4.2.2 Metropolis Algorithm

In this simple algorithm the test probability is the same for all configurations ω′ that
can be reached from ω [5]. The test probability of the remaining configurations is
set to zero. Thus, if N is the number of accessible configurations then

T
(
ω,ω′)=

{
1/N, if ω→ ω′ is possible,
0, otherwise.

(4.25)

We choose the acceptance rate

A
(
ω,ω′)= min

(
Pω′T (ω′,ω)
PωT (ω,ω′)

,1

)
(4.26)

for which W in (4.23) fulfills the condition for detailed balance. In fact, the condition

PωT
(
ω,ω′)×min

(
Pω′T (ω′,ω)
PωT (ω,ω′)

,1

)
= Pω′T

(
ω′,ω

)×min

(
PωT (ω,ω

′)
Pω′T (ω′,ω)

,1

)

is fulfilled both for Pω′T (ω′,ω) larger and smaller PωT (ω,ω′). A generalization of
this straightforward algorithm is due to Hastings [6]. As compared to the universally
applicable Metropolis algorithm one may achieve a considerable improvement.
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A good choice of the initial configuration ω may save computing time. For ex-
ample, at high temperatures the degrees of freedom are uncorrelated and we choose
the variables at random in contrast to low temperatures where they are strongly cor-
related.

We now discuss a particular implementation of the algorithm for the simulation
of lattice systems, here a discrete quantum mechanical system over n lattice points.
We choose an initial configuration q = (q1, . . . , qn). The first lattice-variable q1 is
altered or remains unchanged according to the following rules:

1. Suggest a provisional change of q1 in a randomly chosen q ′1.
2. If the action decreases, that is, �S < 0, then permanently replace q1 by q ′1.
3. If the action increases, choose an uniformly distributed random number r ∈

[0,1]. The suggestion q ′1 is accepted if exp(−�S) > r . Otherwise the lattice-
variable q1 remains unaltered.

4. Proceed with the variables q2, q3, . . . in the same way till all variables have been
tested.

5. If the last lattice point is reached, a “sweep through the lattice” or a Monte Carlo
iteration is finished and one starts again with the first lattice point.

A realistic simulation includes thousands of sweeps through the lattice in order to
reduce statistical errors. Depending on the initial configuration it may take some
sweeps to generate configurations distributed according to the equilibrium distri-
bution. In order to check whether the Markov chain is close to “equilibrium”, one
measures selected expectation values as function of the Monte Carlo time with a
MC-iteration as unit of time. After equilibrium is reached only statistical fluctua-
tions remain and we measure expectation values according to (3.38).

2-State System Consider a system with two energy eigenstates

H |�〉 =E�|�〉 (�= 1,2) with �E =E2 −E1 > 0. (4.27)

The transition |2〉→ |1〉 reduces the energy and therefore W(2,1)= 1. On the other
hand the excitation probability W(1,2) is equal to the Boltzmann factor

B21 = e−β(E2−E1) < 1.

Since the elements in any row add up to 1, the stochastic matrix has the form

W =
(

1−B21 B21
1 0

)
. (4.28)

Its powers

Wn = 1

1+B21

{(
1 B21
1 B21

)
+ (−B21)

n

(
B21 −B21
−1 1

)}

converge exponentially fast to the stochastic matrix

W eq = 1

1+B21

(
1 B21
1 B21

)
= 1

Z

(
e−βE1 e−βE2

e−βE1 e−βE2

)
, (4.29)
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Fig. 4.1 Convergence to equilibrium for a system with 3 states, depending on the initial distribu-
tion

where Z = exp(−βE1)+ exp(−βE2) is the partition function of the two-state sys-
tem. It follows that every initial probability distribution converges to the Boltzmann
distribution

p → P = 1

Z

(
e−βE1, e−βE2

)
. (4.30)

3-State System Let |1〉, |2〉, |3〉 be the energy eigenstates with energies E1 <

E2 <E3. The stochastic matrix takes the form

W = 1

2

(2−B21 −B31 B21 B31
1 1−B32 B32
1 1 0

)

, Bpq = e−β(Ep−Eq), (4.31)

and its powers converge to

W eq = 1

Z

( e−βE1 e−βE2 e−βE3

e−βE1 e−βE2 e−βE3

e−βE1 e−βE2 e−βE3

)

. (4.32)

Thus every initial distribution converges to the Boltzmann distribution

P = 1

Z

(
e−βE1 , e−βE2, e−βE3

)
. (4.33)

Figure 4.1 demonstrates the approach to equilibrium for different initial distribu-
tions. The energy differences are βE2 − βE1 = 0.5 and βE3 − βE2 = 0.3. The
convergence to equilibrium is best for a “cold start” with initial state given by the
ground state and a “warm start” with uniformly distributed initial probabilities. The
convergence is worst when the system starts in the state with the highest energy.
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Fig. 4.2 A uniform distribution is mapped to a P -distribution by the inverse of F , where F de-
notes the anti-derivative of P

4.2.3 Heat Bath Algorithm

For the heat bath algorithm the transition probability W(ω,ω′) depends only on the
final state ω′ such that the condition of detailed balance (4.21) implies W(ω,ω′)∝
Pω′ . The normalization conditions for P and W lead to

W
(
ω,ω′)= Pω′ . (4.34)

The algorithm is particularly useful when the equilibrium distribution P can be in-
tegrated or summed up easily. Let us first apply the heat bath algorithm to estimate
one-dimensional integrals of the form 〈O〉 = ∫

O(x)P (x)dx with fixed P and vary-
ing O . Thus we need random numbers distributed according to P(x). To this end we
first generate uniformly distributed random numbers yi on the unit interval and con-
sider the preimages {F−1(yi)} of these numbers. Here F denotes the monotonically
increasing anti-derivative of the probability density,

F(x)=
∫ x

−∞
P(u)du ∈ [0,1].

Because of the identity

y2 − y1 =
∫ F−1(y2)

F−1(y1)

P (u)du,

these preimages are distributed according to P . This is made clear in Fig. 4.2.
For systems with a finite number of configurations the anti-derivative is simply a

step function. Let us order the n configuration ω = {1,2, . . . , n} according to their
probabilities, such that P1 ≥ P2 ≥ · · · ≥ Pn as shown in Fig. 4.3. Then a possible
implementation of the direct heat bath algorithm proceeds as follows:

1. Select an uniformly distributed random number r ∈ [0,1].
2. If r < P1, choose the first configuration ω= 1 and go to 1.
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Fig. 4.3 The configurations are ordered such that P1 ≥ P2 ≥ · · · ≥ Pn

3. Otherwise, if r < P1 + P2, select the second configuration ω= 2 and go to 1.
4. . . . and so on.

The stochastic matrix corresponding to this algorithm is ideal,

W =

⎛

⎜⎜
⎝

P1 P2 . . . Pn
P1 P2 . . . Pn
...

... . . .
...

P1 P2 . . . Pn

⎞

⎟⎟
⎠=W eq �⇒ W 2 =W. (4.35)

This simple algorithm has an obvious disadvantage: it is only applicable to systems
with a relatively small number of configurations and slows down when this number
increases. Also note that for a Boltzmann equilibrium distribution one needs to know
the partition function in order to compute the probabilities.

So let us modify the simple algorithm such that it applies to systems with con-
tinuous variables. The modification uses a Metropolis algorithm for the conditional
probabilities of the joint distribution P(q). For example, P(q1|q2, . . . , qn) denotes
the probability of q1 for given q2, . . . , qn. If q denotes the configuration at a given
time, then a configuration q′ at the subsequent time is chosen according to

q ′1 ∼ P(q1|q2, q3, . . . , qn),

q ′2 ∼ P
(
q2|q ′1, q3, . . . , qn

)
,

q ′3 ∼ P
(
q3|q ′1, q ′2, . . . , qn

)
,

...
...

q ′n ∼ P
(
qn|q ′1, q ′2, . . . , q ′n−1

)
,

where q ′1 ∼ P(q1|q2, q3, . . . , qn) means that the new q ′1 has to be chosen according
to the conditional probability P(. . .). Later on we will discuss an implementation of
this algorithm for spin systems.

4.3 The Anharmonic Oscillator

In this section we analyse quantum mechanical systems at imaginary time and dis-
cretized on a one-dimensional lattice. They are characterized by their Euclidean
lattice action

S(q)= ε

n−1∑

j=0

{
m

2

(qj+1 − qj )
2

ε2
+ V (qj )

}
. (4.36)
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In particular we shall consider the anharmonic oscillator with quartic potential

V (q)= μq2 + λq4 (4.37)

in more detail. The choice of the number n of lattice points and of the lattice constant
ε is limited mainly by two aspects:

• ε should be sufficiently small to be near the continuum limit ε→ 0.
• The quantities of interest should fit into the interval nε. For instance, the width of

the ground state should be less than nε.

If λ0 is a typical length scale of the system at hand then the quantities n and ε should
satisfy constraints of the type

ε � λ0

10
and nε � 10λ0. (4.38)

Another problem concerns the size of statistical fluctuations in any Monte Carlo
simulation. The relative standard deviation of a random variable O is

�O =
√
〈O2〉 − 〈O〉2

〈O〉2 ∝ (number of lattice points)−1/2. (4.39)

As an estimate for the expectation value 〈O〉 we take

Ō = 1

M

M∑

μ=1

O(qμ) (4.40)

with Boltzmann-distributed configurations qμ. Depending on the initial configura-
tion the Markov chain may need some “time” to equilibrate. In the simulations of the
anharmonic oscillator presented below equilibrium is reached after approximately
10–100 sweeps through the lattice. In addition, since configurations of successive
sweeps are correlated, only every MAth sweep is used to estimate expectation val-
ues. The number MA should be larger than the relevant autocorrelation time—the
time over which the values O(qμ) are correlated. Different random variables may
have vastly different autocorrelation times. As a general rule they are large for spa-
tially averaged quantities.

Hence we must generate M × MA configurations to obtain the Monte Carlo es-
timate (4.40). For the particular simulations of the anharmonic oscillator presented
below we take one in five configurations to estimate the correlation functions

〈
q2
i

〉
,

〈
q4
i

〉
and 〈qiqi+m〉. (4.41)

Here we follow [7] and apply the well-known virial theorem

1

2m
〈0|p̂2|0〉 = 1

2
〈0|q̂V ′(q̂)|0〉 (4.42)

to relate the correlation functions (4.41) to the ground state energy of the oscillator.
This theorem yields the following path integral representation for this energy:

E0 = 〈0|1
2
q̂V ′(q̂)+ V (q̂)|0〉 = 1

Z

∫
Dq e−S[q]

(
1

2
qV ′(q)+ V (q)

)
. (4.43)
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Similarly, using (2.65) we can relate the energy of the first excited state to vacuum
expectation values as follows:

E1 =− 1

�τ
lim
τ→∞ log

〈0|q̂E(τ +�τ) q̂(0)|0〉
〈0|q̂E(τ ) q̂E(0)|0〉 +E0. (4.44)

Finally, to extract information about the ground state wave function we recall

K
(
τ, q ′, q

)=
∑

n

e−τEnψn

(
q ′
)
ψn(q), (4.45)

where the ψn denote the normalized energy-eigenfunctions in position space. Thus
we may compute the probability density for finding the particle (in its ground state)
at q by setting q ′ = q and assuming large Euclidean times,

lim
τ→∞

K(τ, q, q)
∫

dq K(τ, q, q)
= ∣∣ψ0(q)

∣∣2. (4.46)

The left-hand side is given by an imaginary-time path integral and hence is accessi-
ble to Monto Carlo simulations. In fact, the simulation program anharmonic.c
on p. 68 counts for all MC-configuration the number of coordinates that lie in each
bin of a binning of coordinate space to calculate the left-hand side of (4.46).

4.3.1 Simulating the Anharmonic Oscillator

Since a CPU only knows numbers, we rescale the dimensionful constants and co-
ordinates in the action (4.36) with powers of the dimensionful lattice constant ε to
arrive at dimensionless lattice quantities (mL,μL,λL, qL):

qL = q/ε, mL = εm, μL = ε3μ and λL = ε5λ. (4.47)

In terms of these dimensionless quantities the lattice action takes the simple form

S(q)=
n−1∑

j=0

{
mL

2
(qj+1 − qj )

2
L +μLq

2
j,L + λLq

4
j,L

}
. (4.48)

In a local Metropolis algorithm we test a new configuration q′ which differs from the
old configuration q only on one lattice point, say lattice point j . Then the difference
of the two actions is

S
(
q′
)− S(q)≈ (

q ′j − qj
)
L

{−mL(qj+1 + qj−1)L

+ (
q ′j + qj

)
L

{
mL +μL + λL

(
q ′2j + q2

j

)
L

}}
. (4.49)

Here the problem arises how to determine energies or lengths in physical units. They
are only given in terms of the unknown lattice constant ε which does not even enter
the lattice action S(q). Thus one first calculates some observable (for example an
energy), which is then compared to the experimentally known value to set the scale.
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Fig. 4.4 Square of the ground state wave function for the harmonic and anharmonic oscillators
as obtained with the Monte Carlo program anharmonic1.c listed on p. 68. The dimensionless
parameters are given in the plot. More details are explained in the main text

Alternatively one may express all dimensionful quantities in units of a known
and fixed unit of length �,

ε = a�, q = q̃�, m= m̃/�, μ= μ̃/�3 and λ= λ̃/�5. (4.50)

In this system of units

S
(
q ′)− S(q)= (

q̃ ′
j − q̃j

){− m̃

a
(q̃j+1 + q̃j−1)

+ (
q̃ ′
j + q̃j

)
{
m̃

a
+ aμ̃+ aλ̃

(
q̃ ′2
j + q̃ 2

j

)
}}

. (4.51)

This formula is used in the header-file stdanho.h on p. 71 which is called by the
program anharmonic1.c listed on p. 68. The parameters m,μ,λ, the number of
lattice points N (in the C-program n is renamed N ) and the lattice constant a are
all defined in another header-file constants.h on p. 70. In order to have uncor-
related configurations only one out of MA configuration is measured. In addition,
since a Markov chain needs some time to reach equilibrium, we start measuring
configurations only after MA×ME sweeps through the lattice have been done.

To measure the square of ψ0(q) on the interval [−INTERV, INTERV] with the
help of (4.46) we divide the interval into BIN bins. With the parameter DELTA we
adjust the amplitude of a tentative coordinate change during a local update according
to q ′ = q +DELTA× (1− 2r), where r is a uniform random number on [0,1]. The
program anharmonic1.c generates the histogram of the probability distribution.
In Fig. 4.4 we plotted the so obtained density |ψ0(q)|2, both for the harmonic and
the anharmonic oscillator.

The similar program anharmonic2.c listed on p. 69 calculates the ground
state energy from the formula (4.43). We fix the size Na of the interval in units
of � and increase the number of lattice point N or equivalently decrease the lattice
constant a. Table 4.1 shows how the ground state energies of the oscillators vary
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Table 4.1 Ground state
energies for the harmonic
oscillator with
(m,μ)= (1,0.5) and the
anharmonic oscillator with
(m,μ,λ)= (1,−3,1). The
entries in the third column
measure the violation of the
Wick-relation (4.52). The
exact lattice values E0(exact)
are computed numerically

a E0(1,0.5) Wick E0(exact) E0(1,−3,1)

1 0.4477 −0.0008 0.4473 −1.4624

1/2 0.4851 0.0010 0.4851 −1.1339

1/3 0.4928 0.0016 0.4932 −1.0177

1/4 0.4926 0.0014 0.4962 −0.9758

1/5 0.4970 0.0040 0.4976 −0.9466

1/6 0.4948 0.0006 0.4983 −0.9369

1/7 0.5016 0.0003 0.4988 −0.9173

1/8 0.4989 0.0067 0.4991 −0.9144

1/9 0.4992 0.0012 0.4993 −0.9160

1/10 0.4985 0.0009 0.4994 −0.9097

Fig. 4.5 Convergence of the
MC-results for the ground
state energies of the harmonic
oscillator (top panel) and
anharmonic oscillator (bottom
panel) with decreasing lattice
constant a. In both cases
m= 1 may be used to set the
scale

with the lattice constant a. We see that for a � 0.2 the system is already close
to its continuum limit. All simulations have been performed on the fixed interval
aN = 10. How fast the ground state energies converge to their continuum values
is plotted in Fig. 4.5. An extrapolation of the lattice results to the continuum limit
yield the following Monte Carlo estimates:

E0(harmonic oscillator)≈ 0.50, E0(anharmonic oscillator)≈−0.91.

Thus we reproduced the exact ground state energy of the harmonic oscillator in the
continuum limit. Finally we note that for the harmonic oscillator

〈0|q̂4|0〉 − 3〈0|q̂2|0〉2 = 0. (4.52)
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The column labeled “Wick” in Table 4.1 contains estimates for the left-hand side of
this identity. The deviations from zero are due to statistical errors in our simulations.

4.4 Hybrid-Monte Carlo Algorithm

The powerful hybrid-Monte Carlo algorithm has been developed by S. DUANE ET

AL. [8]. A pedagogical description can be found in [9] and in our presentation
we follow in part the reviews [10, 11]. The algorithm represents a combination of
molecular dynamics (see [12]) and Metropolis algorithm. It aims at global updates
of whole configurations with reasonable large acceptance rates, in order to minimize
the time required to generate independent configurations.

Molecular dynamics (MD) simulations are frequently and successfully used to
study (classical) many-body systems and are applied to problems in material sci-
ence, astrophysics and biophysics. In molecular dynamics simulations one solves
the equations of motion numerically and makes use of the property that statistical
ensemble averages are equal to time averages of the system, known as the ergodic
hypothesis.

From an initial configuration, represented by a point (q0,p0) in phase space, one
obtains a unique solution of Hamilton’s equations of motion,

q̇i = ∂H

∂pi
, ṗi =−∂H

∂qi
. (4.53)

Without any numerical errors the energy is a constant of motion and this simple
observation will be relevant in what follows.

In Euclidean quantum mechanics discretized on an imaginary-time lattice Λ with
n points {x} we introduce an extended phase space with dimension 2n. Each point in
extended phase space consists of a broken-line path characterized by variables {qx}
and their canonically conjugated momenta {px}. To construct a Markov process
with global updates and high acceptance rate we introduce the following auxiliary
Hamiltonian in extended phase space:

H(q,p)= p2

2
+ S(q), p2 =

∑

x∈Λ
p2
x, (4.54)

where q = (q1, . . . , qn) and p = (p1, . . . , pn). This Hamiltonian generates a dynam-
ics with respect to a fictitious time—it will be the time of the associated Markov
process. Integrating the equations of motion over a certain “period of time” maps a
point (q,p) in extended phase space to another point (q′,p′). This mapping is used
to suggest the image point as new configuration in a Markov chain in which the pair
(q′,p′) is accepted with probability

A
(
q,p → q′,p′

)= min
{
1, exp

(
H(q,p)−H

(
q′,p′

))}
. (4.55)

For an exact solution of the equations of motion (4.53) energy is conserved and the
acceptance probability would be one. But any numerical integration comes along
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with rounding errors such that H is only conserved up to discretization errors in
which case the acceptance of the new configuration is not guaranteed. By tuning
the period of integration one can ensure that the acceptance rate stays close to 1. In
almost all algorithms the fictitious momenta are drawn from a Gaussian distribution,

PG(p)=N e−p2/2. (4.56)

Now we show that the corresponding Markov process obeys the condition of de-
tailed balance if the integrator is time-reversible. Let us first calculate the transition
probability from q to q′. Under time-reversal a point (q,p) in phase space is mapped
to (q,−p). Since the equations of motion and the integrator are both time-reversible
we conclude that the probability to move from an initial to a final point is invariant
under time-reversal,

T
(
q,p → q′,p′

)= T
(
q′,−p′ → q,−p

)
. (4.57)

With the known acceptance rate in (4.55) and the Gaussian distribution of momenta
we can calculate the transition probability W(q,q′) as follows:

W
(
q,q′

)=
∫

DpDp′PG(p) T
(
q,p → q′,p′

)
A
(
q,p → q′,p′

)
, (4.58)

where one averages and sums over initial and final momenta, respectively. Thus the
left-hand side of the condition of detailed balance,

e−S(q) W
(
q,q′

)= e−S(q′) W
(
q′,q

)
, (4.59)

can be written as

e−S(q) W
(
q,q′

)=N

∫
DpDp′e−H(q,p) T

(
q,p → q′,p′

)
A
(
q,p → q′,p′

)
.

(4.60)

Similarly as in the proof of detailed balance for the Metropolis algorithm on p. 53
we can show that

e−H(q,p) A
(
q,p → q′,p′

)= e−H(q′,p′) A
(
q′,p′ → q,p

)
. (4.61)

Inserting this relation into (4.60) and using that H and A are even functions of the
momenta, we conclude

e−S(q) W
(
q,q′

)=N

∫
DpDp′e−H(q′,p′) T

(
q,p → q′,p′

)
A
(
q′,p′ → q,p

)

=N

∫
DpDp′e−H(q′,p′) T

(
q′,p′ → q,p

)
A
(
q′,p′ → q,p

)

= e−S(q′)W
(
q′,q

)
.

The proof makes clear that the distribution of momenta cannot be arbitrary. We must
impose that the product PG exp(−S) is proportional to exp(−H) and for the Hamil-
tonian (4.54) this means that the distribution must be Gaussian. The described HMC
scheme leaves room for improvement. In particular, one has considerable freedom
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in defining the auxiliary Hamiltonian that governs the molecular dynamics evolu-
tion. One method of speeding up the evolution is Fourier acceleration, in which the
different Fourier modes are assigned different step sizes or masses. This techniques
was introduced for Langevin simulations of field theories [13] and can be applied to
HMC simulations as well [14]. Note that the proof of detailed balance also assumes
that the molecular dynamics evolution defines a volume preserving symplectic map
in phase space.

4.4.1 Implementing the HMC-Algorithm

To fulfil the condition of detailed balance we need a time-reversible and symplectic
integrator to numerically solve the fictitious Hamiltonian dynamics. Using the naive
forward difference operator ḟ (τ )h≈ f (τ + h)− f (τ) in the discretized equations
of motion leads to the time-irreversible prescription

q(τ + h)= q(τ )+ hp(τ ),

p(τ + h)= p(τ )+ hF
(
q(τ )

)
,

(4.62)

with force F =−∇qS. This prescription must not be used in any HMC-algorithm.
In most simulation the time-reversible leapfrog integration is used instead. Here one
first moves forward with the momenta a half step in fictitious time. Then one moves
forward several time-steps alternately with coordinates q and momenta p. The last
move of the momenta is again a half step in fictitious time.

One sweep amounts to an integration over a fictitious time-interval τ = ph. We
denote the position and momentum at fictitious time kh by q(k) and p(k). In particu-
lar q(p) and p(p) are the final position and momentum. From an initial configuration
we determine the final configuration as follows:

1. Begin with a initial lattice field q(0). Depending on the parameters (couplings,
temperature) one chooses a cold or warm start.

2. Generate Gauss-distributed momenta p(0) with variance 1 and mean 0.
3. Move a half step forward with the momenta,

p(1/2) = p(0) + h

2
F(q(0)). (4.63)

4. Iterate the following two steps:

(a) q(k) = q(k−1) + hp(k−1/2), k = 1,2, . . . , p,

(b) p(k+1/2) = p(k−1/2) + hF(q(k)), k = 1, . . . , p− 1.
(4.64)

5. Finally move a half step forward with the momenta,

p(N) = p(p−1/2) + h

2
F(q(p)). (4.65)

6. Accept the newly generated configuration (q′,p′)= (q(p),p(p)) with probability
given in (4.55).
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7. Start over again with the old or the new configuration at point 2.

The so obtained Markov chain converges to the Boltzmann distribution correspond-
ing to the action S.

The leapfrog integrator used in the steps 3,4, and 5 is time-reversible and
defines a symplectic and therefore volume preserving map in phase space. This
second-order symplectic integrator maps the initial point q(0),p(0) to the final point
q(p),p(p). To test for a correct implementation of the algorithm one observes that
for any symplectic map q,p → q′,p′

∫
Dq′Dp′e−H(q′,p′) =

∫
DqDp e−H(q,p)−�H(q,p), (4.66)

where �H(q,p) = H(q′,p′) − H(q,p) denotes the increase in energy along the
trajectory. With the help of the Jensen inequality, which expresses the convexity of
the exponential function, one concludes that the inequality

1 = 〈
e−�H

〉≥ e−〈�H 〉 (4.67)

must hold in the simulations.
There are two parameters which must be adjusted to increase speed and efficiency

of the algorithm. These are the step size h of the discretization of fictitious time and
the interval τ = ph over which one follows a trajectory. In the leapfrog integration
one violates the conservation of energy due to discretization errors. According to
[15]

�H ∝ h3 +O
(
h4). (4.68)

For fixed integration time τ the expectation value of �H shows the following de-
pendency on the lattice-volume V and the step size:

〈�H 〉 ∝ V h4. (4.69)

Thus, for fixed volume we can adjust the acceptance rate by tuning the step size h.
Note that with increasing τ we spend more time to generate new configurations but
at the same time these configurations are less correlated. As always one must find
a good compromise to end up with an efficient algorithm. Also note that due to the
unavoidable rounding errors the leapfrog integration is not exactly time-reversible
and one should check that this does not screw up the results. For example, on can
integrate first forward and then again backward in fictitious time to estimate the
violation of time-reversibility. For more details you may consult [11].

4.4.2 HMC-Algorithm for Harmonic Oscillator

The explicit form of the HMC-algorithm for the one-dimensional oscillator follows
from the auxiliary Hamiltonian,

H = p2

2
+ S(q), S(q)=

∑

x

(
1

2
(∂q)2x +

ω2

2
q2
x +

λ

4
q4
x

)
, (4.70)
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where ∂ is a discretization of the differential operator on the lattice with lattice
constant one. The non-linear equations of motion read

q̇x =+ ∂H

∂px
= px,

ṗx =− ∂H

∂qx
= (

∂2q
)
x
−ω2qx − λq3

x .

(4.71)

For the harmonic oscillator with λ= 0 we obtain a system of coupled linear differ-
ential equations

q̇ = p and ṗ =−Aq (4.72)

with the positive matrix A =−∂2 +ω2. For the most naive discretization the matrix
∂2 is a tridiagonal Toeplitz matrix with −2 on the main-diagonal and 1 on the upper
and lower bidiagonals—it is just the matrix in (2.80) with particular parameters. The
explicit solution of the HMC-implementation on p. 64 reads

(
q(p)
p(p)

)
= M

(
q(0)
p0)

)
(4.73)

with symplectic matrix

M =
(

P Qh
AXQh P

)
, (4.74)

wherein

X = H

4
− 1 with H = Ah2.

The commuting entries P, Q are matrix-polynomials in H of degrees p and p− 1,
respectively. For example for p = 4 we obtain

P = H4

2
− 4H3 + 10H2 − 8H+ 1

Q =−H3 + 6H2 − 10H+ 4.

These matrices satisfy the constraints

P2 − AXQ2h2 = 1, (4.75)

which express the fact that M is a symplectic matrix or that the map (4.73) in phase
space is a volume preserving symplectic map—an integrator with this property is
called symplectic.

For a detailed study of hybrid-Monte Carlo algorithms for non-interacting mod-
els the reader may consult [16]. This paper contains higher-order discretizations of
the molecular dynamics equations of motion, results on the autocorrelations func-
tions and on Metropolis acceptance probabilities as a function of the integration
step size. For models with dynamical fermions the use of higher-order symplectic
integrators in combination with Fourier acceleration [14] often leads to improved al-
gorithms, in particular for intermediate and strong coupling. For example, a fourth-
order integrator introduced by FOREST and RUTH [17], and extended in [18] has
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been useful in simulations of supersymmetric models with bosonic and fermionic
degrees of freedom [19].

For theories with local interactions one may employ a local version of the HMC-
algorithm where single site (and link) variables are evolved in a HMC style [20]. In
parameter regions where Metropolis and heat bath algorithms have low acceptance
rates the local HMC-algorithm may be preferable [21].

4.5 Programs for Chap. 4

This chapter contains the C-programs

• anharmonic1.c
• anharmonic2.c
• constants.h
• stdanho.h

to simulate the anharmonic oscillator with the local Metropolis algorithm.
The program anhamonic1.c in Listing 4.1 estimates the probability density

in position space |ψ0(q)|2 for the harmonic and anharmonic oscillators. The param-
eters of the model are stored in the header-files constants.h and stdanho.h.
The program anharmonic2.c in Listing 4.2 estimates ground state energies E0

of the harmonic and anharmonic oscillators with the Metropolis algorithm. Thereby
the virial theorem (4.43) is used. The parameters are contained in header-files called
by the program.

Header-Files The following files are called by the programs anharmonic.c. In
the header-file constants.h in Listing 4.3 we defined the constants and variables
called by the programs. The header-file stanho.h in Listing 4.4 contains four
functions, which are needed by the main programs.

The first functions delta_action calculates the change of the action when the
coordinate at a given lattice point is changed from x to y. The function expects the
sum of coordinates on the neighboring lattice points, denoted by xs. The variables
muleff, lambdal and massl must be provided.

The next function mcsweep performs MA successive Monte Carlo-sweeps
through the lattice. ∗q points to the array q[N ] and ∗zgr to the variable reject, which
counts how often a suggested change has been rejected. The constants N,MA and
DELTA must be provided.

The third function binning bins the values of q[N ] between −INTERV and
INTERV in the array bin[BIN]. The variables q[N], bin[BIN], stretch, translate and
BIN must be defined and initialized.

The last function moments calculates the sums 1
N

∑
qni .
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Listing 4.1 Anharmonic oscillator I

1 /*program anharmonic.c*/
2 /*Metropolis algorithm for the (an)harmonic oscillator*/
3 /*L=MASS/2 v^2+MU q^2+LAMBDA*q^4*/
4 /*calcules the square of the ground state wave function*/
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <math.h>
8 #include <time.h>
9 #include "constants.h"

10 /*defines: N,A,ME,MA,BIN,INTERV,MASS,MU,LAMBDA,DELTA*/
11 /*init:q[N],qneu,massl,lambdal,muleff,reject,stretch,versch*/
12 #include "stdanho.h" /*function deltaS(qnew,qold,summenn)*/
13 /*MA MC-iterations: mcsweep(*zgr,*q)*/
14 int main(void)
15 {
16 unsigned int i,j;
17 int *zgr,p,bin[BIN];
18 zgr=&reject; srand48(time(NULL));
19 /*initialization*/
20 for (i=0;i<N;i++)
21 q[i]=DELTA*(1-2*drand48());
22 for (i=0;i<BIN;i++)
23 bin[i]=0;
24 /*thermalization*/
25 for (i=0;i<ME;i++)
26 mcsweep(zgr,q);
27 /*calculate binning*/
28 reject=0;
29 for (i=0;i<M;i++)
30 { mcsweep(zgr,q);binning(bin,q);};
31 /*output of probability density and rejection rate*/
32 printf("bin\t probability\n");
33 for (i=0;i<BIN;i++)
34 printf("%i\t %7.3f\n",i,20*bin[i]/(double)M);
35 printf("\nrejected configurations %.2f percent\n",
36 (float)100*reject/(N*M*MA));
37 return 0;
38 }

4.6 Problems

4.1 (Detailed balance) A statistical system admits two configurations which in equi-
librium are distributed with probabilities Pω > 0,ω= 1,2. Construct the most gen-
eral stochastic matrix W(ω,ω′) which obeys the condition of detailed balance,

P(ω)W
(
ω,ω′)= P

(
ω′)W

(
ω′,ω

)
for ω,ω′ ∈ {1,2}.

What is the optimal choice for W such that Wn converges as quickly as possible to
the limit matrix W eq.
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Listing 4.2 Anharmonic oscillator II

1 /*program anharmonic2.c*/
2 /*Metropolis algorithm for anharmonic oscillator*/
3 /*L=MASS/2 v^2+MU q^2+LAMBDA*q^4 */
4 /*calculates ground state energy*/
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <math.h>
8 #include <time.h>
9 #include "constants.h"

10 #include "stdanho.h"
11 int main(void)
12 {
13 unsigned int i,j;
14 int *zgr,p; double moment2=0,moment4=0,wick;
15 zgr=&reject;
16 srand48(time(NULL));
17 /*initialize*/
18 for (i=0;i<N;i++)
19 q[i]=DELTA*(1-2*drand48());
20 /*thermalize*/
21 for (i=0;i<ME;i++)
22 mcsweep(zgr,q);
23 /*simulation and calculation of moments*/
24 reject=0;
25 for (i=0;i<M;i++)
26 {
27 mcsweep(zgr,q);
28 moment2=moment2+moments(2,q);
29 moment4=moment4+moments(4,q);
30 };
31 /*ground state energy, Wick-test, output*/
32 moment2=moment2/M;
33 moment4=moment4/M;
34 wick=3*moment2*moment2-moment4;
35 wick=3*moment2*moment2-moment4;
36 printf("2nd moment =\t\t %7.4f\n4th moment =\t\t %7.4f\n"
37 "ground state energy =\t %7.4f\nWick-test =\t\t %7.4f\n",
38 moment2,moment4,2*MU*moment2+3*LAMBDA*moment4,wick);
39 printf("\nrejected configurations %.2f\n",
40 (float)reject/(N*M*MA));
41 return 0;
42 }

4.2 (Markov process) Consider a system with three energy eigenstates the energies
of which are ordered as E1 < E2 < E3. The allowed transitions are ω → (ω +
1)mod 1. This process cannot fulfill the condition of detailed balance. Show that
there nevertheless is a stochastic matrix W(ω,ω′) with the Boltzmann distribution
as fixed point.
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Listing 4.3 Constants and variables

1 /*program constants.h*/
2 /*constants: N,A,ME,MA,BIN,INTERV*/
3 /*MASS,MU,LAMBDA,DELTA*/
4 /*initial values for q[N],qnew*/
5 /*massl,lambdal,mueleff,reject,streck,versch*/
6 #define N 10 /*number of lattice points*/
7 #define A 1.0 /*lattice constant*/
8 #define M 1000000 /*number of iterations*/
9 #define ME 500 /*until equilibrium is reached*/

10 #define MA 5 /*every MA’th configuration is measured*/
11 #define BIN 40 /*number of bins for wave function*/
12 #define INTERV 2 /*interval for binning [-INTERV,INTERV]*/
13 #define MASS 1.0
14 #define MU 1.0 /*coupling of q**2*/
15 #define LAMBDA 0.0 /*coupling of q**4*/
16 #define DELTA 0.5 /*change of variable = DELTA(1-2 random)*/
17 /*rescale to lattice-variables*/
18 double massl=MASS/A;
19 double lambdal=A*LAMBDA;
20 double muleff=MASS/A+A*MU;
21 double qnew,q[N];
22 unsigned int reject=0;
23 double translate=(double)BIN/2.0;
24 double stretch=0.5*(double)BIN/(double)INTERV;

4.3 (Precision of integrators) Show that the numerical integration of an ordinary dif-
ferential equation of type df/dt = g(f, t) though a leapfrog integrator corresponds
to a precision of 2nd order. This means that it should be demonstrated that the global
error of the obtained solution is of order O(h2), where h is the time-step.

4.4 (Verlet algorithm) If we are not interested in the momenta, but just the trajec-
tory of the particle, we can eliminate the momenta from the leapfrog algorithm and
end up with the Verlet algorithm. Find this algorithm.

4.5 (Fourth-order symplectic integrator) The simplest higher-order symplectic al-
gorithm is that of Forest, Ruth and Omelyan. If initially q = q(τ ), p = p(τ ) then,
in the Forest–Ruth algorithm, the following steps:

q = q+ θh

2
p,

p = p+ θhF(q),

q = q+ (1− θ)
h

2
p,

p = p− (1− 2θ)hF(q),

q = q+ (1− θ)
h

2
p,

p = p+ θhF(q),
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Listing 4.4 Functions for anharmonic oscillator

1 /*program stdanho.h*/
2 /*change of action*/
3 double delta_action(double y,double x,double xs)
4 { return (y-x)*((y+x)*(muleff+lambdal*(y*y+x*x))-massl*xs);};
5 /*MA sweeps*/
6 /*expects constants N,MA,DELTA*/
7 /*arguments: array q[N], pointer to reject*/
8 void mcsweep(int *zgr,double *q)
9 { int i,j; double qnew,dS;

10 for (i=0;i<MA;i++)
11 for (j=0;j<N;j++)
12 { qnew=q[j]+DELTA*(1-2*drand48());
13 dS=delta_action(qnew,q[j],q[(j+1)%N]+q[(j+N-1)%N]);
14 if (dS<0) q[j]=qnew;
15 else
16 if (exp(-dS)>drand48() ) q[j]=qnew;
17 else *zgr=*zgr+1;
18 };
19 }
20 /*binning of values in q[N]*/
21 void binning(int *bin,double *q)
22 { int i,p;
23 for (i=0;i<N;i++)
24 {p=(int)(q[i]*stretch+translate);
25 if ((0<=p)&&(p<BIN)) bin[p]++;};
26 }
27 /*calculation of moments*/
28 double moments(int n,double *q)
29 { int i; double sum=0;
30 for (i=0;i<N;i++)
31 sum=sum+pow(q[i],n);
32 return sum/N;
33 }

q = q+ θh

2
p,

with

θ = 1

2− 21/3
≈ 1.35120719195966

yield q(τ + h), p(τ + h). Prove that this integrator is symplectic.

Remark The algorithm requires three force evaluations per time-step. The middle
step is larger in magnitude than h and goes “backwards in time”. All higher-order
integrators seem to have such steps “backwards in time”. If one is willing to accept
more than three force evaluations for a fourth-order integrator one can avoid having
a step greater in magnitude than h. The algorithm of Omelyan et al. [18] avoids large
time-steps and hence is more accurate than the Forest–Ruth algorithm. It reads

q = q+ ξhp,
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p = p+ (1− 2λ)
h

2
F(q),

q = q+ ξhp,

p = p+ λhF(q),

q = q+ (
1− 2(χ + ξ)

)
hp,

p = p+ λhF(q),

q = q+ ξhp,

p = p+ (1− 2λ)
h

2
F(q),

q = q+ ξhp,

with parameters

ξ ≈ 0.1786178958448091,

λ≈−0.2123418310626054,

χ ≈−0.06626458266981849.
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Chapter 5
Scalar Fields at Zero and Finite Temperature

Scalar fields are discussed in many introductory textbooks on quantum field theory
[1–4]. They describe spinless particles and from an algebraic point of view they
are relatively simple. Gauge bosons and fermions, which are more complicated on
account of their polarization and spin degrees of freedom, will be treated in later
chapters. More important than the educational value of scalar theories is their role
in the electroweak theory, in which a doublet of scalar fields interact with the fields
of leptons, quarks and gauge bosons. If we neglect these interactions then we obtain
a self-interacting φ4-theory for the scalars.

This subsector of the standard model, the Higgs sector, probably defines a non-
interacting quantum field theory. It is known that in more than four dimensions the
removal of the UV-cutoff of the regularized φ4-theory leads to a non-interacting the-
ory for scalar fields [5, 6]. There are arguments that this applies to scalar theories in
four dimensions as well. In contrast, in less than four dimensions we end up with an
interacting field theory. The triviality of the Higgs sector might very well be respon-
sible for the electroweak gauge theory being only an effective theory below a cutoff
Λ. This conclusion would not apply if there were a non-Gaussian fixed point. A non-
Gaussian fixed point has been intensively searched after in lattice simulations—so
far without success. If we accept the idea of a “trivial” standard model, the question
about the value of the cutoff Λ arises. The answer to this question depends on the
mass of the Higgs particle.

Scalar fields play a pivotal role in many inflationary cosmological scenarios.
They could be responsible for the anticipated exponential expansion of the early
universe, could trigger various phase transitions and, last not least, their quantum
fluctuations could contribute to the structures observed in the cosmic microwave
background radiation [7, 8].

5.1 Quantization

This chapter is devoted to scalar field theories in d space-time dimensions. In a
given inertial frame we identify an event with its coordinates x = (xμ) = (ct,x)

A. Wipf, Statistical Approach to Quantum Field Theory, Lecture Notes in Physics 864,
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in R
d . A real scalar field assigns to each space-time point x a real number,

φ :Rd →R, x→ φ(x). (5.1)

It satisfies a covariant field equation which is the Euler–Lagrange equation

δS

δφ(x)
= 0 =⇒ ∂μ

∂L

∂(∂μφ(x))
− ∂L

∂φ(x)
(5.2)

of a Poincaré-invariant classical action

S[φ] =
∫

ddxL (φ, ∂μφ)=
∫

ddx

(
1

2
∂μφ∂

μφ − V (φ)

)
.

For a non-interacting field V (φ) = 1
2m

2φ2 and the scalar field fulfills the linear
Klein–Gordon equation (�+m2) φ = 0, with m representing the particle mass.

To quantize the scalar field we apply the well-known quantization rules of quan-
tum mechanics to a system with infinitely many degrees of freedom. The quantum
mechanical results can be generalized according to the substitutions

qi(t)≡ q(t, i)→ φ(t,x)= φ(x) and
∑

i

→
∫

dd−1x. (5.3)

For example, the classical field at x becomes a position-dependent operator φ̂(x)—
one operator at every point x—the time dependence of which is determined by the
Heisenberg equation.

With these substitution rules we obtain the following (formal) functional inte-
gral representation for vacuum expectation values of time-ordered products of field
operators:

〈0|T φ̂(x1) · · · φ̂(xn)|0〉 = 1

Z

∫
Dφ φ(x1) · · ·φ(xn) eiS[φ]/�. (5.4)

The symbol
∫

Dφ means integration over all scalar fields φ. In particular, a one-
dimensional field theory for φ ≡ q : R→ R describes a quantum mechanical sys-
tem. The normalization factor Z in (5.4) represents the vacuum–vacuum amplitude

Z =
∫

DφeiS[φ]/�.

Similarly as in quantum mechanics at imaginary time one introduces the Eu-
clidean field operator

φ̂E(x)≡ φ̂E(τ,x)= eτĤ φ̂(0,x)e−τĤ , x = (τ,x)= (−ix0,x
)

(5.5)

and shows that vacuum expectation values of time-ordered products of such opera-
tors have the formal functional integral representations

〈0|T φ̂E(x1) · · · φ̂E(xn)|0〉 = 1

Z

∫
Dφφ(x1) · · ·φ(xn)e−SE[φ]/�, (5.6)
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where SE denotes the Euclidean action. These expectation values are the Schwinger
functions Sn(x1, . . . , xn) and should have the following properties [9–11].

1. Euclidean covariance: The Sn are invariant (covariant for fields with spin) under
translations and Euclidean “Lorentz-transformations” xi → Rxi + a, with R an
orthogonal transformation in R

d .
2. Reflection positivity: Pick test functions fn(x1, . . . , xn) with support in the “time-

ordered” subsets 0 < τ1 < · · · < τn. Choose one such fn for each positive n.
Given a point x, let x̄ be the reflected point about the τ = 0 hyperplane. Then,

∑

m,n≤N

∫
ddx1 · · ·ddxm ddy1 · · · ddynSm+n(x1, . . . , xm, y1, . . . , yn)

× fm(x̄1, . . . , x̄m)
∗fn(y1, . . . , yn)≥ 0, (5.7)

where ∗ represents complex conjugation. This property reflects the positivity of
the Hilbert space in quantum theory.

3. Permutation symmetry: The Sn are symmetric functions of their arguments. This
property replaces the locality property in Minkowski space-time.

4. Cluster property: If there is a unique vacuum state then the Sn cluster,

Sm+n(x1, . . . , xm, y1 + a, . . . , yn + a)
|a|→∞−−−−→ Sm(x1, . . . , xm)Sn(y1, . . . , yn).

(5.8)
5. Regularity: There are different versions of regularity, see [9–11].

Slightly stronger axioms based on measure theory have been formulated in [12].
These Euclidean axioms are due to K. OSTERWALDER and R. SCHRADER and

they have significance for the analytically continued Minkowski space quantum
fields: one can reconstruct a Minkowski space quantum field theory by assum-
ing these axioms for the Schwinger functions. The vacuum expectation values of
products of field operators in Minkowski space are called Wightman functions Wn.
Thanks to the Euclidean axioms the Euclidean Schwinger functions Sn can be an-
alytically continued to the corresponding Wightman functions, which possess all
properties of a relativistic Hilbert-space theory.

5.2 Scalar Field Theory at Finite Temperature

Similarly as in quantum mechanics one argues that thermal expectation values of
time-ordered products of Euclidean field operators have the following Euclidean
functional integral representations:

〈
T φ̂E(x1) · · · φ̂E(xn)

〉
β
= 1

Z(β)
tr e−βĤ T φ̂E(x1) · · · φ̂E(xn)

= 1

Z(β)

∮
Dφ φ(x1) · · ·φ(xn) e−SE[φ]/�, (5.9)
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where β denotes the inverse temperature and SE the Euclidean action. We thereby
integrate over β-periodic fields, φ(τ +β,x)= φ(τ,x). In the zero-temperature limit
β →∞ we integrate over all fields and thus recover the vacuum expectation values
given by the Schwinger functions. But at finite temperature we integrate only over β-
periodic configurations as indicated by the circle on the integration symbol [18–22].

The normalization factor in (5.9) is simply the partition function

Z(β)= e−βF =
∮

Dφ e−SE[φ]/�, (5.10)

the logarithm of which is proportional to the free energy density f = F/V , an im-
portant quantity in quantum statistics. The thermal expectation values (5.9) are gen-
erated by the partition function in presence of an external source,

Z[β, j ] =
∮

Dφ e−SE[φ]+
∫
j (x)φ(x) ≡ eW [β,j ] (5.11)

as follows:

〈
T φ̂E(x1) . . . φ̂E(xn)

〉
β
= 1

Z[β,0]
δnZ[β, j ]

δj (x1) · · · δj (xn)
∣∣∣∣
j=0

. (5.12)

In contrast, the connected thermal correlation functions

〈
T φ̂E(x1) . . . φ̂E(xn)

〉
c,β

= δnW [β, j ]
δj (x1) · · · δj (xn)

∣∣∣∣
j=0

(5.13)

are generated by the functional W [β, j ] defined in (5.11), which is proportional to
the free energy in presence of an external source. At zero temperatures it becomes
the Schwinger functional W [j ], which generates all the connected vacuum expecta-
tion values

〈0|T φ̂E(x1) . . . φ̂E(xn)|0〉c = δnW [j ]
δj (x1) · · · δj (xn)

∣∣∣∣
j=0

. (5.14)

For non-interacting particles the generating functionals at finite temperature can be
calculated in closed forms.

5.2.1 Free Scalar Field

The Euclidean action of the free scalar field is quadratic,

SE,0[φ] = 1

2

∫
ddx

(∇φ · ∇φ +m2φ2)= 1

2

∫
ddx φ

(−Δ+m2)φ, (5.15)
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and the functional integral in (5.11) is Gaussian. Integrating over β-periodic fields
yields the generating functional in closed form,

Z[β, j ] = const

det1/2(−Δ+m2)
exp

(
1

2

∫
ddx ddyj (x)Sβ(x − y)j (y)

)
, (5.16)

with the thermal propagator in position space

Sβ(x − y)= 〈
T φ̂E(x)φ̂E(y)

〉
β
= 〈x| 1

−Δ+m2
|y〉β. (5.17)

Its Fourier representation

Sβ(x)= 1

β

∑

n

∫
d3k

(2π)3
e−iωnx0−ikx

ω2
n + k2 +m2

, ωn = 2π

β
n (5.18)

contains a sum over n and an integral over the spatial momenta. The sum originates
from the periodicity conditions for the fields at finite temperature. In the limit of
very low temperatures the Matsubara frequencies ωn are dense and the Riemann
sum turns into a Riemann integral. Thus in the limit T → 0 the function Sβ(x)

approaches the Euclidean propagator

S(x)= lim
β→∞Sβ(x)=

∫
d4k

(2π)4
e−ikx

k2 +m2
. (5.19)

The quadratic action SE,0[φ] in (5.15) contains the linear operator

A=−Δ+m2, (5.20)

and the corresponding Gaussian functional integral for the partition function (5.10)
yields the square root of 1/detA, see (5.16), such that the free energy reads

F(β)=− lnZ(β)

β
= 1

2β
log detA+ const. (5.21)

The differential operator A acts on β-periodic functions and the temperature depen-
dence of its eigenvalues and determinant originates from these boundary conditions.

Determinants of differential operators—functional determinants—play a promi-
nent role in theoretical and mathematical physics. They appear in a variety of investi-
gations in quantum field theory, for example in tunneling and semiclassical physics,
self-consistent Hartree–Fock and Schwinger–Dyson equations or lattice field theo-
ries with dynamical fermions to mention a few. Therefore we pause here and have a
closer look at functional determinants.

Zeta-Function Regularization As a first simplification we enclose the system
in a finite box in order to find discrete eigenvalues {λn} of A. We assume that the
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eigenvalues are positive—as happens for the particular operator in (5.20). Following
[13, 14] we define the ζ -function of A:

ζA(s)=
∑

n

λ−sn . (5.22)

For sufficiently large �(s) the spectral sums converge and define an analytic func-
tion which can be analytically continued as meromorphic function on the entire
complex s-plane [15]. For example, the operator

A=− d2

dϕ2
+ 1 on L2

(
S1) (5.23)

has double degenerate eigenvalues 12,22,32,42, . . . and its zeta-function is given
by Riemann’s celebrated zeta-function,

ζR(A)= 2
∞∑

n=1

1

n2s
= 2ζR(2s). (5.24)

The spectral sums converge for �(s) > 1/2 and their analytic continuation is given
by Riemann’s zeta-function. The spectral sums for the operator in (5.20) converge
for �(s) > d/2 and define a meromorphic function on the complex s-plane. More
generally, with the help of Weyl’s formula for the distribution of large eigenvalues
[16] one can show that for a second order elliptic operator on a finite domain the
sum (5.22) converges for all s with �(s) > d/2.

For a finite-dimensional matrix A the sum (5.22) exists for all s and with

dλ−sn
ds

=−λ−sn log(λn)

one finds the useful formula

−dζA(s)

ds

∣∣∣∣
s=0

=
∑

n

logλn = tr logA= log detA. (5.25)

Now we define the determinant of an infinite-dimensional matrix, i.e. differential
operator, by this formula. For any (elliptic) differential operator the ζ -function is
regular at s = 0 such that the left hand side in this formula is well-defined. The
analytic continuation of the spectral sum to s-values where the sum diverges cor-
responds to a particular renormalization of functional determinants—the so-called
zeta-function regularization. We refer to [17] where the connection to other renor-
malizations is discussed.

Heat Kernel of a Differential Operator Now we explore the intimate relation
between the ζ -function and heat kernel of an elliptic differential operator A. They
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are related by a Mellin transformation:

ζA(s)=
∑

n

1

�(s)

∫ ∞

0
dt t s−1e−tλn = 1

�(s)

∫ ∞

0
dt t s−1 tr

(
e−tA

)
. (5.26)

If A were the Hamiltonian of a physical system, the trace of K(t) = exp(−tA)
would be the partition function of that system at inverse temperature β = t . This
explains why the integral kernel K(t;x, y) of K(t) is called a heat kernel. Clearly,
the last trace in (5.26) is the integral of K(t, x, x) over space such that

ζA(s)= 1

�(s)

∫ ∞

0
dt t s−1

∫
dx K(t;x, x). (5.27)

In position space the heat kernel fulfills the differential equation

∂

∂t
K(t;x, y)=−AxK(t;x, y) with lim

t→0
K(t;x, y)= δ(x − y). (5.28)

To calculate the determinant of A one proceeds as follows:

1. Construct the unique solution of the initial value problem (5.28) for x = y.
2. Insert the solution K(t, x, x) into the representation (5.27) of the ζ -function.
3. Calculate the determinant with the help of formula (5.25).

However, this approach meets several problems: For many operators, for example
wave operators in inhomogeneous background fields, one cannot calculate the ker-
nel on the diagonal K(t, x, x) in closed form. Furthermore, the s-integral in (5.27)
only exists for sufficiently large �(s). Thus we need the analytic continuation of the
zeta-function, which even for large �(s) is not known analytically. Only for sim-
ple systems can one compute the heat kernel explicitly and construct the analytic
continuation, for example by a Poisson resummation. However, what is needed is
not the zeta-function itself, but its derivative at the origin. Unlike ζ , this quantity
is computable for many interesting systems. We refer to the book [15] for further
facts about the zeta-function method and the review [23, 24] for an introduction to
the theory of heat kernels and their small-t expansions. In [25, 26] the zeta-function
is used to calculate Casimir energies, in [27] the regularization is applied to com-
pute the fermionic path integral in the massless Schwinger model in all topological
sectors and in [28] it is used to find multi-instanton determinants in 4-dimensional
Yang–Mills theories.

Free Energy of Non-interacting Scalars Let us return to the simple operator
A=−Δ+m2, which defines the Euclidean action for free scalars. Since −Δ is the
Schrödinger operator of a free particle we may use the result (2.42) and obtain

K
(
t;x, x′)= e−m2t

(4πt)d/2

∑

n∈Z
e−{(τ−τ ′+nβ)2+(x−x′)2}/4t , x = (τ,x). (5.29)
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The contribution with n= 0 corresponds to the heat kernel (Euclidean propagator)
in R

d . The summation over n enforces periodicity in imaginary time τ with period
β and yields the heat kernel on the cylinder [0, β] ×R

d−1. Inserting K(t, x, x) into
(5.27) we end up with the following integral representation of the ζ -function:

ζA(s)= βV

(4π)d/2�(s)

∫
dt t s−1−d/2e−m2t

∞∑

n=−∞
e−n2β2/4t . (5.30)

The spectrum of the operator A on the cylinder is not discrete. This fact expresses
itself by a harmless volume-divergence of the ζ -function. We get rid of this diver-
gent factor through the transition to the free energy density. One finds the same
energy density if ones encloses the particles in a finite box and let the box size tend
to infinity.

Now we can do the t-integral via the integral representation

∫ ∞

0
dt tae−bt−c/t = 2

(
c

b

)(a+1)/2

Ka+1(2
√
bc) (5.31)

of the modified Bessel functions of second kind and obtain

ζA(s)= βV

(4π)d/2

md−2s

�(s)

(

�

(
s− d

2

)
+4

∞∑

1

(
nmβ

2

)s−d/2

Kd/2−s(nmβ)
)

. (5.32)

Here we introduced the Gamma function �(s) with simple poles at s = 0,−1,−2,
. . . . Now we use the relations

�(s − 2)

�(s)
= 1

(s − 1)(s − 2)
and

1

�(s)
= s +O

(
s2)

to find the explicit expression for the free energy density in four dimensions,

f (β)=− 1

2βV
ζ ′A(0)=− m4

128π2

(
3− 4 log

m

μ
+ 64

∑

n=1,2...

K2(nmβ)

(nmβ)2

)
. (5.33)

Note that the density contains a scale parameter μ with the dimension of a mass.
This parameter was introduced to rescale the operator A to a dimensionless operator
A/μ2 with dimensionless eigenvalues, zeta-function and determinant.

In order to obtain the free energy density for massless particles, we use K2(x)∼
2/x2, so that

lim
m→0

f (β)=−T 4

π2
ζR(4), (5.34)

where the ubiquitous Riemann zeta-function ζR(s) occurs. For �(s) > 1 it has the
simple series representation

ζR(s)=
∞∑

n=1

n−s . (5.35)
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The function is regular in the whole complex plane, except for one simple pole with
unit residue at s = 1, and it plays a pivotal role in the theory of primes. Some specific
values of this function and its derivative are

ξR(0)=−1

2
, ξR(2)= π2

6
, ξR(4)= π4

90
and ζ ′R(0)=−1

2
log(2π).

(5.36)
Thus in the limit m→ 0 we obtain the following free energy density and the inner
energy density for scalar particles:

f (β)=−π2T 4

90
and u(β)= ∂β(βf )= π2T 4

30
. (5.37)

The black-body radiation of photons with two polarizations has twice the free en-
ergy density of massless scalars.

High-Temperature Expansion To calculate the high-temperature expansion of
the free energy density for massive scalars in (5.33) we need the small-x expansions
of the series

I (ν, x)=
∞∑

n=1

Kν(nx)

nν
, ν ≡ d

2
, x ≡mβ. (5.38)

These expansions have been determined in [29]. In particular in four space-time
dimensions we need

I (2, x)= π4

45x2
− π2

12
+ πx

6
+ x2

16
log

x

4π
− x2

32

(
3

2
− 2γ

)
+O

(
x4). (5.39)

This leads to the following high-temperature expansion of the energy density:

f (β)=−π2T 4

90
+ m2T 2

24
− m3T

12π
− γm4

32π2
+ m4

32π2
log

(
4πT

μ

)
+O

(
m2

T 2

)
,

(5.40)

valid for T � m, with Euler’s constant γ ≈ 0.5772. The high-temperature expan-
sion has been calculated with different regularizations in [18–20]. More details can
be found in the textbooks [21, 22].

We may add a potential term to the action of the free field (5.15). This gives rise
to the Euclidean action of a self-interacting scalar field

SE = SE,0 +
∫

ddx V (φ). (5.41)

Expanding the functional integrals (5.9) or (5.10) in powers of the interaction po-
tential V leads to a series expansion for thermal expectation values of time-ordered
products of field operators. One can use the zero-temperature Feynman rules to cal-
culate the terms in this expansion if one only uses the finite-temperature propagator
and replaces each k0-integral by the sum over Matsubara frequencies [18–22].
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5.3 Schwinger Function and Effective Potential

Effective potentials are very often used in the study of phases or phase transitions
in physical systems with an order parameter. In field theory, the effective potential
is the Legendre transform of the thermal Schwinger function,1 which is just the
Schwinger functional density for a homogeneous source j . In other words, it is the
effective action density for a homogeneous field. In statistical physics the thermal
Schwinger function corresponds to the free energy density in the presence of an
external source, for example a constant magnetic field. One can consider alterna-
tives to this “conventional” effective potential, e.g. the constraint effective potential
[30], which will be introduced in Chap. 7. The partition function in presence of an
external homogeneous source j has the functional integral representation [18–20]

Z(β, j)≡ eβV w(β,j) = C

∮
Dφ exp

(
−SE[φ] + j

∫ β

0
ddx φ(x)

)
, (5.42)

where one integrates over β-periodic fields, i.e. fields on the cylinder [0, β]×V over
the spatial region V . We denote the spatial region and its volume both by V . Except
for the geometric factor βV , the thermal Schwinger function w(β, j) is equal to the
Schwinger functional W in (5.11) with constant source. We can identify the thermal
Schwinger function with the negative free energy density of the system with shifted
Hamiltonian Ĥj = Ĥ − (j, φ̂). At low temperatures it converges to the negative
ground state energy density −E0(j)/V of the system with shifted Hamiltonian.

From w(β, j) we can calculate the mean of the spatial averaged field in the pres-
ence of the source,

dw

dj
=

∮
DφM e−SE[φ]+j

∫
φ

∮
Dφ e−SE[φ]+j

∫
φ

= 〈M〉j , M = 1

βV

∫
φ(x). (5.43)

A constant source is compatible with translational invariance of the system such that
for periodic boundary conditions 〈φ(x)〉j is independent of x. Hence we have

〈
φ(x)

〉
j
= dw

dj
. (5.44)

One should keep in mind that expectation values depend on the external source. Also
note that the formula (5.43) cannot be used at points where w is not differentiable.

The thermal Schwinger function is strictly convex, because its second derivative
is equal to the expectation value of a positive quantity:

d2w

dj2
= βV

〈(
M − 〈M〉)2〉

. (5.45)

1This should not be confused with the n-point Schwinger functions at zero temperature.
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Now we define the finite-temperature effective potential u as the Legendre transform
of the thermal Schwinger function,

u(β,ϕ)= (Lw)(ϕ)= sup
j

(
jϕ −w(β, j)

)
. (5.46)

The maximizing source j is conjugate to ϕ. The latter is an averaged macroscopic
field, in contrast to the microscopic field φ entering the functional integral. If the
minimum ϕ0 of u is not degenerate then it is equal to the expectation value of the
field operator:

u(β,ϕ0)≤ u(β,ϕ), ∀ϕ⇐⇒ ϕ0 =
〈
φ̂(x)

〉
j=0. (5.47)

For a differentiable u this follows from the second result in (5.55).

Generalizations Both in fundamental and applied physics one is interested in how
quantum systems react to a change of external conditions. A prominent example is
the Casimir effect [31], which has been measured to great accuracy [32, 33] and
which shows how the vacuum energy of a quantum field changes when one moves
the walls of the enclosing cavity [34, 35]. In a more general setting one may ask
the question how the vacuum structure of an Euclidean scalar field theory with La-
grangian density

L
(
φ(x)

)=
∫

Ω

ddx

{
1

2
∇φ(x)∇φ(x)+ V

(
φ(x)

)}
(5.48)

depends on the geometry of the quantization region Ω , which does not need be a
cylinder as in thermal field theory, and on the boundary conditions imposed at the
boundary ∂Ω of Ω [36, 37]. In the linear sigma models the field φ takes its values in
a linear space and transforms non-trivially under a global inner symmetry group. In
non-linear sigma models the components of φ are coordinates of a target-manifold,
for example a Lie group or a homogeneous space [38].

The “classical ground state” corresponds to a homogeneous field, which mini-
mizes the potential V . For most systems it is not equal to the quantum mechanical
expectation value 〈φ̂(x)〉 of the quantum field in Ω . In order to study the quantum
corrections to the classical vacuum, one introduces a generalized Schwinger func-
tion w on the (Euclidean) space-time region Ω according to

Z(Ω,j)=
∫

Dφ exp

(
−SE[φ] + j

∫

Ω

φ(x)

)
= eΩw(Ω,j). (5.49)

In non-linear sigma models the coupling to the source may look differently. Anal-
ogously as in thermal field theory one defines the effective potential u(Ω,ϕ) as
Legendre transform of the Schwinger function.
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5.3.1 The Legendre–Frenchel Transformation

The Legendre(–Frenchel) transformation (5.46) shows up in mechanics, thermody-
namics, statistical mechanics as well as quantum field theory. In this section we
shall collect some relevant properties of this transform. Related and more results are
found in [39–41]. Let ϕ and j be elements of a convex set in R

d .

Corollary 5.1 The Legendre transform of a (for sufficiently large enough argu-
ments) convex function is always convex.

The proof is seen by considering the interpolating field between ϕ1 and ϕ2,

ϕα = (1− α)ϕ1 + αϕ2, 0 ≤ α ≤ 1. (5.50)

Since the supremum of a sum is smaller or equal to the sum of the suprema of each
summand we have

u(ϕα) = sup
j

{
(1− α)(j,ϕ1)+ α(j,ϕ2)−

(
(1− α)+ α

)
w(j)

}

≤ (1− α) sup
j

{
(j,ϕ1)−w(j)

}+ α sup
j

{
(j,ϕ2)−w(j)

}

= (1− α)u(ϕ1)+ αu(ϕ2), (5.51)

such that the graph of u lies below the line connecting the points (ϕi, u(ϕi)). This
proves the convexity of u.

Corollary 5.2 The Legendre transformation is involutive2 for convex functions.

For every point (j0,w(j0)) on a convex w we can find a hyperplane below the
graph of w. Hence, we find a j0 that depends on ϕ0, so that

w(j0)+ (ϕ0, j − j0)≤w(j) for all j,

or equivalently

(ϕ0, j)−w(j)≤ (ϕ0, j0)−w(j0) for all j.

The supremum of the left hand side with respect to j is the Legendre transform Lw

at the point ϕ0. The resulting inequality can be written as

w(j0)≤ (ϕ0, j0)− (Lw)(ϕ0). (5.52)

2This means that its square is the identity, i.e. if a the Legendre transform takes f to g, then the
Legendre transform of g will be f .
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Fig. 5.1 Graphical
construction of the Legendre
transformation u(ϕ) of a
function w(j) L(j) is a linear
function of j with slope ϕ
touching the graph of w

The right hand side is the Legendre transform of (Lw)(ϕ0) and we conclude that
w(j0) is bounded from above by (L 2w)(j0). On the other hand, from the very
definition of the Legendre transformation it is clear that

(Lw)(ϕ)≥ (ϕ, j)−w(j) for all ϕ =⇒w(j)≥ (ϕ, j)− (Lw)(ϕ). (5.53)

Taking the supremum with respect to ϕ in the last inequality we see that w(j) is
bounded from below by (L 2w)(j). The two bounds imply that the Legendre trans-
formation is involutive or in other words that (L 2w)(j)=w(j).

Corollary 5.3 (Fenchel/Young inequality) For arbitrary ϕ and j the inequality

w(j)+ u(ϕ)≥ (j,ϕ), u=Lw (5.54)

holds true. The inequality becomes an equality if ϕ and j are conjugate.

This inequality results directly from the inequality (5.53).

Corollary 5.4 If the continuous Schwinger function shows a cusp then u = Lw

has a plateau. In case of a one-component field the width of the plateau is equal to
the jump of the slope of w across the cusp. Inversely, a plateau is mapped into a
cusp.

This property follows from the graphical construction of the Legendre transfor-
mation as illustrated in Fig. 5.1. The Legendre transform u(ϕ) is −L(0), where
L(j) is the linear function with slope ϕ and tangent to w(j). For a given ϕ and a
convex and differentiable w, the conjugate source is defined by the requirement that
L(j) defines the hyperplane tangent to the graph of w at the point (j,w(j)).

Figure 5.2 illustrates a typical situation for a system which shows spontaneous
symmetry breaking. The Schwinger function has a cusp for vanishing source and
the effective potential u has a plateau.
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Fig. 5.2 Left panel: the Legendre transformation maps cusps to plateaus and plateaus to cusps.
Right panel: the twofold application of a Legendre transformation produces the convex envelope

Corollary 5.5 The twofold Legendre transform of a for sufficiently large enough
arguments convex function is the convex envelope of this function.

This corollary results from the previously discussed properties of Legendre trans-
formation and is illustrated in Fig. 5.2.

Corollary 5.6 Let w and u be differentiable functions. Then the conjugate variables
j and φ are related according to

ϕ =w′(j) and j = u′(ϕ). (5.55)

Substituting (j,ϕ) by (p, ẋ) and (w,u) by (H,L) this is the well-known Leg-
endre transformation in analytical mechanics. It describes the transition from the
Hamiltonian to the Lagrangian formulation.

Defining the rescaled function of a function f according to

fα(x)= αf

(
x

α1/2

)
, α > 0, (5.56)

it is not difficult to show the

Corollary 5.7 If u is the Legendre transform of w, then uα is the Legendre trans-
form of wα .

The Legendre transform of the monomial with exponent α > 1 is equal to the
monomial with the dual exponent β ,

w(j)= 1

α
|j |α ⇐⇒ u(ϕ)= 1

β
|ϕ|β, with

1

α
+ 1

β
= 1. (5.57)
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With increasing exponent β the function u develops a plateau from −1 to 1. The
exponent of the transformed function w approaches one such that it converges to
the piecewise linear function w(j)= |j |.

Corollary 5.8 If w′′(j) and u′′(j) are the matrices of the second derivatives of w
and u, then the following identity holds:

w′′(j)u′′(ϕ)= 1, (j, ϕ) dual. (5.58)

Thus the second derivatives of a function and its Legendre transform are inverse to
each other.

This property follows directly from the relations

∂2w

∂jr∂js
= ∂ϕr

∂js
and

∂2u

∂ϕr∂ϕs
= ∂jr

∂ϕs
.

In passing we note how the Legendre transformation acts on translated and inverted
functions. We obtain

w(j) = w1(j)+ b ⇒ (Lw)(ϕ)= (Lw1)(ϕ)− b,

w(j) = w1(j + k) ⇒ (Lw)(ϕ)= (Lw1)(ϕ)− ϕ · k, (5.59)

w(j) = w−1
1 (j) ⇒ (Lw)(ϕ)=−ϕ · (Lw1)

(
1

ϕ

)
.

5.4 Scalar Field on a Space-Time Lattice

In a lattice regularization of functional integrals one first discretizes the Euclidean
space R

d by an d-dimensional lattice Λ. Since the lattice constant a defines a mini-
mal length this regulates the quantum field theory at short distances. In a second step
one assumes that the lattice Λ is finite. Since the size of the system defines a maxi-
mal length this regulates the quantum field theory at long distances. On a finite lat-
tice the formal functional integral (5.9) turns into a well-defined finite-dimensional
integral which can be dealt with by the methods of statistical mechanics. To simplify
matters we consider a hyper-cubic lattice. The lattice points x ∈Λ have coordinates

xμ = a nμ with nμ ∈ Z, (5.60)

and the extent of the lattice in direction μ is Lμ = aNμ, see Fig. 5.3. Typically
we impose periodic boundary conditions and thus identify the lattice points x =
(x1, . . . , xμ, . . . , xd) and x′ = (x1, . . . , xμ + Lμ, . . . , x

d). With this identification
the lattice becomes a discretized torus. A scalar field on the lattice defines a map

Λ " x→ φx ∈T (5.61)
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Fig. 5.3 The lattice is
characterized by the number
of lattice points
N1 ×N2 × · · · ×Nd as well
as the lattice constant a.
A scalar field is defined on
the lattice points

from Λ into the target space T . For a real field the target space is T = R and in
the standard model of the electroweak interaction T = C

2. Sigma models have a
manifold as target space and for Ising-like spin models T is a finite group.

Boundary Conditions To specify the lattice model we must prescribe the bound-
ary conditions for the scalar field. These conditions are classified as follows:

• Periodic boundary conditions: With these conditions the lattice is a discrete torus
and the lattice field theory is invariant under discrete translations and rotations.

• Fixed boundary conditions: Here we prescribe the field on the boundary φ|∂Λ.
Such boundary conditions are useful to describe entangled states in quantum field
theory.

• Open boundary conditions: Here we switch off all interactions between sites on
the lattice Λ with sites in the complement of Λ (viewed as subset of Zd ). These
boundary conditions are used in solid state physics.

• Antiperiodic boundary conditions: They serve as a tool to inhibit unwanted long-
range correlations or to study interfaces. This modification of the periodic bound-
ary conditions is frequently used in lattice field theories.

In the remaining part of this chapter we will consider non-interacting scalar fields
subject to periodic boundary conditions.

Let us consider the free Klein–Gordon field with target space T = R. We need
to approximate the continuum action (5.15) by an action for the lattice field. We
thereby substitute the integral by a Riemann sum according to

∫
ddx · · · → ad

∑
· · · (5.62)
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and replace differentials by differences. Note that we are free in the choice of the
lattice derivative. One often chooses the forward derivative or backward derivative

(∂μφ)(x)=
φx+aeμ − φx

a
or (∂μφ)(x)=

φx − φx−aeμ
a

. (5.63)

In both cases the discretized action of the free scalar field is given by

S = ad−2

2

∑

〈x,y〉
(φx − φy)

2 + m2ad

2

∑

x

φ2
x

= ad−2

2

(
2d + (am)2

)∑

x

φ2
x − ad−2

∑

〈x,y〉
φxφy, (5.64)

where the factor ad results from the substitution (5.62) and the last sum includes all
nearest-neighbor pairs 〈x, y〉.

Similar as in quantum mechanics we rescale dimensionful quantities with the
appropriate power of the lattice constant in order to obtain dimensionless quantities.
The dimensionless mass mL and the dimensionless lattice field φL are

am=mL and a(d−2)/2φ = φL. (5.65)

The rescaled distance between adjacent lattice points is one and the rescaled lattice-
length in direction μ is Lμ = Nμ. The number of lattice points is given by V =
N1 · · ·Nd . In the following we suppress the index L.

The lattice action (5.64) defines a quadratic form of the field:

S = 1

2

∑

x,y∈Λ
φxAxyφy, Axy =

(
m2 + 2d

)
δxy −

d∑

μ=1

(δx,y+eμ + δx,y−eμ). (5.66)

The symmetric matrix (Axy) is thereby positive for a positive m2. For a linear target
space we regard the {φx |x ∈ Λ} as components of a vector. For a real field this
vector-space is RV , equipped with the scalar product

(φ,χ)=
∑

x∈Λ
φxχx. (5.67)

The lattice action (5.66) can be rewritten as

S = 1

2
(φ,Aφ) with A= (Axy), (5.68)

and calculating the 2-point function (or propagator) of the free Euclidean theory
reduces to the computation of the simple Gaussian integral

〈φxφy〉 = 1

Z

∫
Dφ φxφy e−

1
2 (φ,Aφ), Dφ =

∏

x∈Λ
dφx (5.69)



92 5 Scalar Fields at Zero and Finite Temperature

with the partition function

Z =
∫

Dφ e−
1
2 (φ,Aφ) = (2π)V/2 det−1/2A. (5.70)

Such Gaussian integrals have already appeared in Chap. 2 from which we take the
result

〈φxφy〉 =A−1
x,y ≡G(x,y) (5.71)

for the propagator of the free lattice field. In order to calculate this propagator we
determine the eigenfunctions and eigenvalues of the symmetric Toeplitz matrix A.
Thereby we assume that Λ has the same extent N in all directions and hence has
V =Nd sites. The eigenvalues and eigenvectors depend on the boundary conditions
for the scalar field. For periodic boundary conditions the translational invariant A in
(5.66) is circulant and its V orthonormal eigenvectors ψp read

ψp(x)= 1√
V

exp(ipx) with px =
N∑

μ=1

pμx
μ. (5.72)

The allowed lattice momenta lie on the dual lattice Λ∗ with elements

pμ = 2π

N
nμ ∈Λ∗, nμ ∈ {1,2, . . . ,N}. (5.73)

The corresponding V eigenvalues are

λ(p)=m2 + 2d − 2
∑

μ

cos(pμ)=m2 + p̂2, p̂μ = 2 sin
pμ

2
. (5.74)

With these eigenvalues and eigenvectors we find the following spectral resolution of
the propagator with V terms:

〈φxφy〉 =
∑ ψp(x)ψ

†
p(y)

λ(p)
= 1

V

∑

{pμ}

eip(x−y)

m2 + p̂2
. (5.75)

In case of different edge lengths L1, . . . ,Ld we have to substitute nμ/L by nμ/Lμ

in the formula above. In the thermodynamic limit N →∞ the lattice momenta fill
in the Brillouin zone (0,2π]d and the Riemann sum

〈φxφ0〉 = 1

(2π)d
∑

{pμ}
�p1 · · ·�pd eipx

m2 + p̂2

where �pμ = 2π/N tends to an integral over the Brillouin zone,
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Fig. 5.4 Exponential decay
of the two-point function

〈φxφ0〉 N→∞−−−−→ 1

(2π)d

∫ 2π

0
ddp

eipx

m2 + p̂2

= 1

(2π)d

∫ 2π

0
ddp

cos(px)

m2 + p̂2
, p̂μ = 2 sin

pμ

2
. (5.76)

The 2-point function on Λ= Z
d is real and invariant under translations and rotations

which transform the lattice into itself. The value on the diagonal is given by

〈φ0φ0〉 ≡ Cm = 1

m
√
m2 + 4

. (5.77)

Figure 5.4 illustrates the normalized values of the 2-point function for three differ-
ent masses at the lattice points x = 0, . . . ,20. The exponential fits of the 2-point
function are quite excellent. However, for real x the integral (5.76) oscillates around
the exponential fit.

5.5 Random Walk Representation of Green’s Function

The random walk representation is a reformulation of Euclidean field theory and was
introduced by K. Symanzik in his studies of φ4 models [42, 43]. Here we discuss the
random walk representation for the 2-point function (5.76) of the free scalar field on
Z
d as “weighted sum over all paths on the lattice” from x to y. This result is useful

both for estimates and approximations in lattice field theories.
Let us first consider the quantity

G(x)= e−μ
∑

paths 0→x

e−μ� = e−μ
∞∑

�=0

P�(x) e−μ� (5.78)

on the infinite lattice. The length of a path (measured in units of the lattice distance)
is thereby given by �. In contrast, μ is an arbitrary parameter that will be fixed later
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Fig. 5.5 Number of possible
paths of length 3 on the
lattice. Each path starts at the
origin, marked with a black
bullet

on. The quantity P�(x) represents the number of paths of length � from 0 to x ∈ Z
d .

There exists a simple generating function for the P�:

(
eip1 + e−ip1 + · · · + eipd + e−ipd

)� =
∑

x∈Zd

P�(x) ei(p1x1+···+pdxd ). (5.79)

To prove this formula we compute the left hand side explicitly. We thereby obtain a
sum over all possible combinations of � coefficients e±ipμ . If we interpret e±ipμ as a
step towards the ±μ-direction, each of this terms corresponds to one special path of
length � on the lattice. Since P�(x)= 0 for all points x with a distance greater than �
from the origin, the sum over x converges. Figure 5.5 indicates the number of paths
of length 3 on a 2-dimensional quadratic lattice. There are nine different paths of
length �= 3 connecting the origin (marked with a bullet) with an arbitrary nearest
neighbor. In contrast, there is no path of length �= 3 that connects the origin with
a next-nearest neighbor. Clearly, P3(x)= 0 for points with a distance greater than 3
from the origin. The total number of paths of length 3 is equal to (2d)3 = 64.

Note that we get zero for the integration of the exponential function exp(ipx)
over the Brillouin zone pμ ∈ [0,2π) as long as the exponent does not vanish. Thus
we can extract the polynomials P� according to

P�(x)= 1

(2π)d

∫ 2π

0
ddp e−ipx(eip1 + e−ip1 + · · · + eipd + e−ipd

)�
. (5.80)

Now we insert this result into (5.78). This yields the geometric series

G(x) = e−μ

(2π)d

∫ 2π

0
ddp e−ipx

∑

�

{
2e−μ(cosp1 + · · · + cospd)

}�

= e−μ

(2π)d

∫ 2π

0
ddp

(
e−ipx

1− 2e−μ
∑

ν cospν

)
(5.81)
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= 1

(2π)d

∫ 2π

0
ddp

(
e−ipx

eμ − 2d + 4
∑

ν sin2 pν
2

)
. (5.82)

We recognize the integral representation of the 2-point function of the free Klein–
Gordon field (5.76), provided

eμ − 2d =m2. (5.83)

Inserting this relation into equation (5.78) we end up with the random walk repre-
sentation for the Green function of the free scalar field on the lattice Z

d [12]

〈φxφ0〉 = 1

(m2 + 2d)

∑

paths 0→x

1

(m2 + 2d)�
. (5.84)

This result implies the simple upper bound (see problem 5.90)

〈x|(−Δ+m2)−1|y〉< 1

m2
e−μ|x−y| (5.85)

with μ= log(1+m2/2d). It is a special case of the energy-entropy bounds as they
appear in polymer expansions.

5.6 There Is No Leibniz Rule on the Lattice

When one proves the invariance of a continuum action under infinitesimal space-
time symmetries then one employs the ubiquitous Leibniz rule. Unfortunately this
rule does not hold on any lattice in accordance with the absence of infinitesimal
translational and rotational symmetries and the absence of supersymmetry on a
lattice. Now we prove that there exists no lattice derivative which satisfies this
rule.

The set of (complex) lattice functions x → fx ∈ C form a linear space and any
lattice derivative D is a linear operator on this space.

Lemma 5.1 A linear operator D : map(Λ,C)→ map(Λ,C) that fulfills Leibniz’s
rule

D(f · g)= (Df ) · g + f · (Dg), ∀f,g :Λ→C, (5.86)

vanishes, i.e. D = 0. We denote by f ·g the pointwise product of functions, (f ·g)x =
fxgx .

Proof We write the Leibniz rule in component form in order to prove this lemma.
For that purpose we identify a lattice function f : x → fx with the V -component
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vector fx and the linear operator D with a V × V matrix Dxy , i.e.

(Df )x =
∑

y∈Λ
Dxyfy. (5.87)

Then Leibniz’s rule may be written as

∑

z

Dxz(fzgz)= gx
∑

z

Dxzfz + fx
∑

z

Dxzgz. (5.88)

For both functions in (5.88) we now choose the characteristic function of a fixed
lattice site, say y. Then fz and gz vanish for all z �= y and in addition fy = gy = 1.
Hence, equation (5.88) simplifies to Dxy = 2δx,yDxy . It immediately follows that
Dxy = 0 for all sites x, y. �

In case of periodic lattice functions we will demand

∑

x∈Λ
(Df )x = 0, (5.89)

following the corresponding formula for fields over Rd . The backward and forward
lattice derivatives satisfy this condition. Finally note that the lemma (5.86) does not
exclude the possibility that Leibniz’s rule is satisfied for a particular subset of lattice
functions.

5.7 Programs for Chap. 5

The following octave-program:

• corrscalar

computes the 2-point function (5.76) of the free scalar field as a function of x, di-
vided by the mass-dependent constant Cm as given in (5.77). The rescaled correlator
is equal to 1 for x = 0. The correlation function and exponential fit exp(−mx) with
the propagator mass represent the output.

1 function corrscalar;
2 # calculates 2-point function for free scalar field
3 # in one dimension with naive lattice derivative.
4 # program asks for square of mass.
5 # stored in corrscalar.dat
6 #
7 m2=input("square of mass");
8 wco=sqrt(m2)*sqrt(4+m2)/(2*pi);# for normalization
9 of integrals

10 closeplot;
11 Np=1001; eps=2*pi/(Np-1); # Np sampling points: odd number!
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12 p=linspace(0,2*pi,Np);ph=0.5*p;
13 sph=sin(ph);nominator=m2+4*sph.*sph;eps=eps/3;
14 #z=eps*cos(p).*cos(p);
15 z=eps./nominator;
16 # For Simpson integration;
17 for i=2:2:Np-1;
18 z(i)=4*z(i);
19 endfor;
20 for i=3:2:Np-2;
21 z(i)=2*z(i);
22 endfor;
23 x=linspace(0,20,21)’;N=length(x);
24 int0=zeros(N,Np);
25 s0=zeros(N,1);
26 for i=1:N
27 int0(i,:)=z.*cos(x(i)*p);
28 s0(i)=sum(int0(i,:));
29 endfor;
30 s0=wco*s0;
31 data=[x,s0]; # set minimum of u to 0
32 data1=[x,exp(-sqrt(m2)*x)];
33 gplot [0:20] data, data1;
34 corrscalar=fopen("corrscalar.dat","w","native");
35 for i=1:N
36 fprintf(corrscalar,"(%4.2f,%4.2f)",x(i),s0(i));
37 if (rem(i,5)==0) fprintf(corrscalar,"\n");
38 endif;
39 endfor;
40 fclose(corrscalar);
41 endfunction;

5.8 Problems

5.1 (Black-body radiation for massless scalar particles) Compute the free energy
density as well as the inner energy density for massless scalar particles in two and
three dimensions.

5.2 (High-temperature expansions) Calculate the high-temperature expansions for
the free energy densities of massive scalars in two and three dimensions.

5.3 (Legendre transformation) For which ϕ is the Legendre transform of w(j)= ej

defined? Calculate the transform u(ϕ).

5.4 (Bounds for the free propagator) Prove that for a positive m2 the propagator
(5.84) can be bounded as follows:

0 < 〈x|(−Δ+m2)−1|y〉< 1

m2
e−μ|x−y| (5.90)

with a new mass parameter μ= log(1+m2/2d).
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5.5 (Generalization of Corollary 5.8) Let W [j ] be a twice differentiable functional
and Γ [ϕ] its Legendre transform,

Γ [ϕ] = inf
j (x)

(∫
ddx j (x)ϕ(x)−W [j ]

)
. (5.91)

The minimizing j (x) is conjugated to the prescribed field ϕ(x). Prove the following
generalization of Corollary 5.8 in the section on the Legendre–Fenchel transforma-
tion:

∫
ddy

δ2W

δj (x)δj (y)

δ2Γ

δϕ(x)δϕ(z)
= δ(z, y), (5.92)

whereby the second derivatives must be evaluated at conjugated fields j ↔ ϕ. In
applications W [j ] is the Schwinger functional and Γ [ϕ] the effective action. This
equation means that the second functional derivative of the effective action is the
inverse of the connected two-point function.
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Chapter 6
Classical Spin Models: An Introduction

One distinguishes between continuous and discrete spin models (lattice models)
depending on whether the spins take their values in a continuous or discrete target
space. The previously considered lattice scalar field theory with target space T =R

defines a continuous spin model. A typical representative of the class of discrete spin
models is the ubiquitous Ising model and its generalizations. The target space of the
Ising model is the finite group Z2. It is a simple statistical model for ferromagnetism
induced by “elementary spins” or “elementary magnets” sitting at the sites of a
crystal lattice. The spins can be in one of two states, either spin up or spin down and
each spin interacts at most with its nearest neighbors. We will focus on a quantitative
understanding of such systems with many or infinitely many degrees of freedom.

In this chapter phase transitions as observed in ferromagnets will be of particular
interest. The two-dimensional Ising model is one of the simplest statistical models
to show a phase transition. Below the Curie temperature we observe a spontaneous
magnetization, where a majority of spins point in a given direction. Above Tc, the
spontaneous magnetization vanishes. Iron, cobalt and nickel with Curie tempera-
tures of 1043,1403 and 631 K are examples of ferromagnetic materials.

6.1 Simple Spin Models for (Anti)Ferromagnets

When modeling ferromagnets one often assumes that the spins of the atoms on the
lattice sites can only attain discrete values. The Hamiltonian of such a spin model
has the form

H =−
∑

x,y∈Λ
Jxysxsy − h

∑

x∈Λ
sx, (6.1)

where sx denotes the spin associated with the atom at site x, h the magnetic field
and Jxy the interaction strength (exchange coupling) between the spins at sites x
and y. Often it is a good approximation to assume that Jxy is non-zero only if the
sites x and y are nearest neighbors. In addition, for a translational invariant system

A. Wipf, Statistical Approach to Quantum Field Theory, Lecture Notes in Physics 864,
DOI 10.1007/978-3-642-33105-3_6, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 6.1 Magnetization as a
function of h for the
one-dimensional Ising model

we expect that the exchange couplings are independent on the nearest-neighbor pair
x, y. In the Ising model a spin sx parallel to a fixed axis has value 1 and a spin
antiparallel to this axis has value −1. The interaction energy has the form

H =−J
∑

〈x,y〉
sxsy − h

∑

x∈Λ
sx, sx ∈ {−1,1}, (6.2)

where the first sum extends over all pairs of nearest neighbors. A ferromagnetic
interaction J > 0 tends to align spins, and an antiferromagnetic interaction J < 0
tends to anti-align them.

6.1.1 Ising Model

The simple Ising model with energy function (6.2) has been intensively studied and
is often referred to as “harmonic oscillator of statistical physics”. It was introduced
back in 1920 by WILHELM LENZ, the thesis advisor of ERNST ISING [1], to model
ferromagnetic systems. Five years later Ising solved the one-dimensional model, the
Ising chain [2]. The thermodynamic potentials of the Ising chain can be calculated
in closed form, for example via its transfer matrix, see Sect. 8.1. Unfortunately this
simple model does not show spontaneous magnetization at any finite temperature.
With the C-program on p. 114 one can simulate the Ising chain and calculate its
magnetization as function of the external magnetic field. In complete agreement
with the analytic solutions for the infinitely long chain one obtains a smooth curve
for any positive temperature, see Fig. 6.1. This is expected for a system without
spontaneous magnetization.

In 1936 RUDOLPH PEIERLS analyzed the two-dimensional Ising model and
proved the existence of a low-temperature phase exhibiting spontaneous magneti-
zation [3, 4], see Sect. 10.1. For high temperatures there is no magnetization and
hence we expect a transition from an ordered low-temperature phase to a disor-
dered high-temperature phase at a critical temperature Tc > 0. Without magnetic
field this so-called Curie temperature was calculated by KRAMERS and WANNIER

in 1941 [5]. We shall discuss their duality transformation in Sect. 10.2. Three years
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later LARS ONSAGER found the exact solution by means of the transfer matrix
method [6]. He obtained the following analytical formula for the free energy den-
sity, measured in units of kBT , as function of K = βJ (for a lucid discussion see
[7–10]):

−βf (T )= log cosh(2K)− 2K + 2

π

∫ π/2

0
dθ log

(
1+

√
1− κ2 sin2 θ

)
, (6.3)

with κ = 2 tanh(2K)/ cosh(2K). The corresponding internal energy is

u(T )= J
∂

∂K

(
βf (T )

)= 2J − J coth 2K

(
1+ (

2 tanh2 2K − 1
)2K(κ)

π

)
, (6.4)

where K(κ) is the complete elliptic integral of the first kind, defined as

K(κ)=
∫ π/2

0

dθ
√

1− κ2 sin2 θ
. (6.5)

Differentiating the internal energy with respect to T yields the specific heat,

c= 4K2

π sinh2 2K

{
K(κ)

(
sinh2 2K + 2

cosh2 2K

)
−E(κ) cosh2 2K − π

2

}
, (6.6)

which contains the complete elliptic integrals of the second kind,

E(κ)=
∫ π/2

0

√
1− κ2 sin2 θ dθ.

The complete elliptic integral of the first kind has a singularity at κ = 1 and the
phase transition occurs at this point. The temperature at which the phase transition
occurs is then given by the condition

1 = 2
tanh(2Kc)

cosh(2Kc)
or 2Kc = log

(
1+√

2
)
. (6.7)

This yields the critical temperature Tc = 2.269J . In Fig. 6.2 we plotted the internal
energy density and the specific heat as functions of K ∝ 1/T .

The Dutch physicist HENDRIK CASIMIR was not well informed about what had
happened in theoretical physics during the Second World War and asked PAULI

about new developments. The latter answered:

Not much interesting . . . except Onsager’s solution of the two-dimensional Ising model.

This comment should emphasize the importance of Onsager’s solution in theoretical
physics. After all, two-dimensional Ising-like models are the only non-trivial statis-
tical systems that show a phase transition and can be solved analytically. Today we
know several methods for solving these models. We will discuss some of them. The
possibility to compare approximation schemes with the exact solution explains the
importance of the Ising model in statistical physics.

So far, the three-dimensional Ising model could not be solved analytically and
one has to rely on approximations, for example the mean field approximation, high-
temperature or the low-temperature expansions, or numerical simulations to calcu-
late thermodynamic potentials and (thermal) expectation values. The quality of the
mean field approximation increases with the number of nearest neighbors and the
approximation yields the correct critical exponents in four or more dimensions.
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Fig. 6.2 The internal energy per site and the specific heat as a function of K = βJ . The phase
transition occurs at the critical value Kc = 0.4407

6.2 Ising-Type Spin Systems

Besides Ising models there are many more interesting lattice spin models with dis-
crete or continuous target spaces. Examples with discrete target spaces are the stan-
dard and planar Potts models where the spin may assume q different values. Ex-
amples with continuous target spaces are non-linear O(N)-models for which the
spins take their values on the unit sphere in R

N . Also note that lattice regularized
Euclidean quantum field theories define particular spin models.

We use the same notation as in Chap. 5 and denote the coordinates of the sites in a
hypercubic lattice Λ⊂ aZd by x, where a is the lattice spacing. We impose periodic
boundary conditions and thus identify the points x and x +Nμeμ (no sum), where
eμ denotes the unit vector in direction μ. At the end of the calculation we often take
the thermodynamic limit where the number of sites N1 · · ·Nd tends to infinity. After
a suitable rescaling we may assume that a = 1 such that the unit cell has unit volume
and the lattice volume is V = N1 · · ·Nd . To every site we assign a T -valued spin
variable sx . Because of the periodic boundary conditions, we have

sx′ = sx for x′ = x +Nμeμ, μ= 1, . . . , d. (6.8)

Every point inside a hypercubic lattice has 2d nearest neighbors and 2d bonds to-
wards these neighbors. A configuration ω = {sx |x ∈Λ} assigns to all spins on the
lattice site certain values,

ω :Λ→T ×T × · · · ×T =T V , V = |Λ|. (6.9)

We denote the set of all configurations by Ω . If the target space has a finite number
of elements, as happens for the Ising model with |T | = 2, then there exist |T |V
different configurations ω ∈Ω .
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6.2.1 Standard Potts Models

CYRIL DOMB suggested that his student RENFREY POTTS study a class of gener-
alized Ising models with q > 2 orientations for the spin. Nowadays these models
are named after Potts who described the systems towards the end of his 1952 Ph.D.
thesis. His results for the Zq -models and the standard q-state Potts models were
published in [11]. Both lattice systems have qV different configurations. In two di-
mensions the q-state Potts model is exactly solvable and shows a phase transition
with order parameter. Both the order of the transition and the critical exponents
depend on the number q of spin states.

In a lattice gas representation every lattice point is occupied by one of q different
atoms. We enumerate the different atoms by σ ∈ {1,2, . . . , q}. Identical nearest-
neighbor atoms have an interaction energy of −Jp and different nearest-neighbor
atoms have no interaction energy. Thus the energy of a particular distribution of
atoms, given by a configuration ω= {σx |x ∈Λ}, has the form

Hpotts(ω)=−Jp
∑

〈x,y〉
δ(σx, σy)− h

∑

x

δ(σx,1), σx ∈ {1,2, . . . , q}, (6.10)

where δ(σx, σy) is the Kronecker symbol and the first sum extends only over pairs
of nearest neighbors. Note that we added an explicit symmetry-breaking term with
magnetic field h. For h= 0 the energy is minimal if there is only one type of atoms
on the lattice—clearly there are q such classical vacuum configurations.

We may rewrite the energy function (6.10) in the general form (6.2), with sx
being a unit vector pointing to one of q equally spaced points on the unit sphere in
R
q−1. The particular cases with q = 2,3,4 are illustrated in Fig. 6.3. So let us pick

q unit vectors {s(1), . . . , s(q)} which point from the origin to these q equally spaced
points on the unit sphere. Since

∑
n s(n) = 0, the scalar product of any two of these

unit vectors is

s(n) · s(m) = q̃δnm − 1

q − 1
with q̃ = q

q − 1
. (6.11)

To prove the equivalence of the models (6.10) and (6.2) we map the variable σx at
site x to the vector sx = s(σx). This identification yields

sx · sy = q̃δ(σx, σy)− 1

q − 1
. (6.12)

Solving for the Kronecker symbol and inserting into (6.10) yields

Hpotts(ω)=−J̃
∑

〈x,y〉
sx · sy − h̃s(1) ·

∑

x

sx −C, (6.13)

with Jp = q̃J̃ , h= q̃h̃ and an additive constant C which depends on the volume and
the parameters of the model. For positive Jp all vectors are aligned in the classical
ground states and the systems show ferromagnetic behavior. For negative Jp it is
energetically favorable when two neighboring spins are different and it is not easy
to characterize all configurations with minimal energy, at least for q ≥ 3.
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Fig. 6.3 The unit vectors of the vector-Potts model with q = 2,3,4

The equivalence of the models (6.10) and (6.13) proves that the 2-state Potts
model is just the Ising model. In contrast, the 1-state Potts model is very closely
related to the bond percolation model. Several exact results are known for the Potts
model in two dimensions. On a square lattice a Kramers–Kronig type duality trans-
formation exists and relates the partition functions at high and low temperatures
and in particular fixes the critical temperature Tc [11, 12]. Baxter argued that for
q > 4 the two-dimensional model shows a first-order transition, whereas for q ≤ 4
the transition is of higher order [13]. The mean field approximation predicts a first-
order phase transition for q ≥ 3. The mean field results agree with all exact results
when q is sufficiently large and it is conjectured that the approximation is accurate
to leading order in q in a large q expansion.

6.2.2 The Zq Model (Planar Potts Model, Clock Model)

Now we introduce another generalization of the Ising model where one attaches a
unit vector in a fixed plane to each lattice point. The unit vector points towards one
of the corners of a planar equilateral q-gon, characterized by the angles

θn = 2πn

q
, n= 1,2, . . . , q. (6.14)

Let θxy = θx − θy be the angle between the vectors at neighboring sites x, y and
J (θ) a 2π -periodic function, then the energy function for the generalized Zq -model
reads

H =−
∑

〈x,y〉
J (θxy). (6.15)

Since the interaction only depends on the angle between vectors at neighboring sites
it is invariant under the global Zq -transformations

θx → θx + 2πn

q
with n ∈ Zq. (6.16)
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The special choice J (θ) = Jc cos θ leads to the planar Potts model or clock model
with energy function

Hclock =−Jc
∑

〈x,y〉
cos(θx − θy). (6.17)

Potts himself solved the two-dimensional model with 2,3, and 4 states. The system
with q = 3 states is equivalent to the standard Potts model with Jp = 3Jc/2,

Hclock(θ)=HPotts(σ )+ 1

2
Jc, σx ∈ {1,2,3}.

The planar Potts model with four states reduces to two standard Potts models with
two states each. However, no relation between the standard and planar Potts models
is known for q > 4.

6.2.3 The U(1) Model

We obtain the U(1) model from the planar Potts model (clock model) in the limit of
infinite q . In this limit the angle θn in (6.14) assumes any value between 0 and 2π ,
such that θx parametrizes the circle S1 $ U(1). The two-dimensional U(1)-model
shows an unusual phase transition. Unusual because it is of infinite order, which
means that the free energy is infinitely many times differentiable though at the crit-
ical point it is non-analytic. The transition is due to the existence of topologically
stable vortex solutions and not related to any symmetry breaking. We may interpret
the phase transition as the condensation of vortices and antivortices: at low tempera-
ture there are only bound pairs of vortices with opposite circulations, whereas above
the critical temperature we have a plasma of vortices and antivortices. In the disor-
dered high-temperature phase the correlation functions for the spin variables show
exponential falloff whereas in the “massless” low-temperature phase they falloff
polynomially. This type of transition is called Kosterlitz–Thouless phase transition
[14–16].

6.2.4 O(N) Models

In the O(N) model the spins take their values on a unit sphere in R
N . For

N = 1,2,3 we may interpret them as possible directions of elementary magnets
generated by classical spins—these models come close to our classical conception
of a ferromagnet. The energy of a configuration ω= {sx} is given by

HO(N)(ω)=−J
∑

〈x,y〉
sx · sy, sx ∈R

N, sx · sx = 1. (6.18)

A ferromagnetic system is characterized by J > 0. The scalar product of two clas-
sical spins is invariant under a simultaneous rotation of the spins,
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Rsx ·Rsy = sx · sy with R ∈O(N).

Hence the energy function is invariant under global rotations of the spins:

HO(N)(Rω)=HO(N)(ω), Rω= {Rsx |x ∈Λ}. (6.19)

The O(N) invariance justifies the name O(N)-models for these lattice systems. The
model with N = 1 is the Ising model, the model with N = 2 is known as XY model
(rotor model) and the model with N = 3 is referred to as O(3)-model or classical
Heisenberg model. The model with O(4) is a toy model for the Higgs sector of
the Standard Model of particle physics. Actually, the model with N = 0 describes
self-avoiding walks [17].

6.2.5 Interacting Continuous Spins

So far we considered the energy functions of the form (6.1) with couplings Jxy and
magnetic field h. Now we also admit an interaction of a spin with itself, in which
case the energy function can be written as

H(ω)= 1

2

∑

x,y

Jxy(sx − sy)
2 +

∑

x

V (sx). (6.20)

For simplicity we assumed that the self-interaction V is the same at all lattice sites.
If V = 0 then the energy function belongs to a Gaussian model. On the other hand,
we may adjust the couplings Jxy in order to find the Euclidean action of an inter-
acting scalar field on the lattice. Similarly, we may regard the energy (6.18) of the
O(N) spin model as the Euclidean action for the non-linear O(N)-sigma model on
a lattice:

SE(ω)= 1

2g2

∑

〈x,y〉
(φx − φy)

2, φx ∈R
n, φx · φx = 1. (6.21)

The idea of identifying spin configurations as lattice fields of a discretized Euclidean
field theory and energy functions as Euclidean actions according to

ω= {sx |x ∈Λ} ←→ ω= {φx |x ∈Λ}
βH(ω)←→ SE(ω)/�

(6.22)

has been very fruitful for the progress of non-perturbative quantum field theory as
well as statistical physics.

6.3 Spin Systems in Thermal Equilibrium

In statistical physics we abandon the idea of solving the dynamics for each of
the many microscopic degrees of freedom since this is not necessary to determine
macroscopic variables such as pressure, temperature or magnetization. Instead we
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describe the system by a so-called density matrix, which determines the probability
of the occurrence of a configuration. In the following we are mainly interested in
the canonical ensemble, where the energy H(ω) of a configuration ω determines
the probability of its occurrence. In general the energy function depends on sev-
eral parameters λ= (λ1, . . . , λn). These parameters may characterize the coupling
between two spins or the coupling between the spins and an external field. In the
canonical ensemble a configuration ω occurs with probability

exp
(−βHΛ(ω)

)
, β = 1

kbT
, (6.23)

where T denotes the absolute temperature and kb the Boltzmann constant. The par-
tition function is defined as

ZΛ(β)=
∑

ω∈Ω
exp

(−βHΛ(ω)
)
, (6.24)

where the sum extends over all configurations.
For a continuous target space the sum turns into an integral over the lattice spins.

For example, the partition function of the simple Gaussian model reads

ZΛ(β)=
∫

Dωe−βHΛ(ω), HΛ(ω)= 1

2

∑

x,y

Jxy(sx − sy)
2 (6.25)

with the Lebesgue measure as single spin distributions,

Dω=
∏

x∈Λ
dsx, sx ∈R. (6.26)

The partition function of the interacting O(N) model with spins on the sphere Sn−1

looks almost identical,

ZΛ(β)=
∫

dμ(ω)e−βHΛ(ω), HΛ(ω)=−J
∑

〈x,y〉
sx · sy, (6.27)

but the single spin distribution is the measure on the sphere induced from R
n,

dμ(ω)=
∏

x∈Λ
dμ(sx), dμ(s)= δ

(
s2 − 1

)
dns, sx ∈R

n. (6.28)

In general, the partition function and thermodynamic potentials depends on the in-
verse temperature β , the parameters λ in the Hamilton function and the lattice Λ.

Next we define expectation values of observables O(ω) in the canonical ensem-
ble. For discrete spin systems they are given by sums,

〈O〉Λ(β)= 1

ZΛ(β)

∑

ω

O(ω)e−βHΛ(ω) (6.29)

and for continuous spin systems by high-dimensional integrals,

〈O〉Λ(β)= 1

ZΛ(β)

∫
dμ(ω)O(ω)e−βHΛ(ω). (6.30)
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In the following we adopt the notation from the discrete models. The corresponding
formulas for continuous models are obtained by the substitution

∑
ω →

∫
dμ(ω).

The basic quantities of thermodynamics are derived from the partition func-
tion ZΛ. For example, the Helmholtz free energy is proportional to the logarithm
of ZΛ,

FΛ(β)=− 1

β
logZΛ(β). (6.31)

Since this extensive quantity diverges in the thermodynamic limit, V → ∞, we
mainly use the free energy density

fΛ(β)= 1

V
FΛ(β) (6.32)

instead. For systems with short-range interactions the densities fΛ converge in the
thermodynamic limit to the free energy density f of the infinite system,

fΛ(β)
V→∞→ f (β). (6.33)

Note that the energy of one single configuration is not accessible in an experiment.
But we can measure the expectation value of the energy at equilibrium—the inner
energy. It is given by

UΛ(β)= 〈H 〉Λ(β)=− 1

ZΛ(β)

∂

∂β

∑

w

e−βHΛ(ω) =− ∂

∂β
logZΛ(β). (6.34)

Substituting the logarithm of the partition function by the free energy leads to the
expression

UΛ(β)= ∂

∂β

(
βFΛ(β)

)= FΛ(β)− T
∂

∂T
FΛ(β). (6.35)

To find the macroscopic magnetization m = 〈sx〉 we couple the spins to a homo-
geneous external magnetic field according to Eq. (6.1) and differentiate the corre-
sponding h-dependent free energy density with respect to h. Making use of transla-
tional invariance on a lattice with periodic boundary conditions we obtain

m := 〈M〉 = 〈sx〉 = − ∂

∂h
fΛ(β,h), M = 1

V

∑

x

sx. (6.36)

We obtain further information about the system via its n-point correlation functions

G(n)(x1, . . . , xn)= 〈sx1 · · · sxn〉, x1, . . . , xn ∈Λ. (6.37)

In particular, the 2-point function

G(2)(x, y)≡G(x,y)= 〈sxsy〉 (6.38)

measures the correlation of the spins at site x and at site y. If G(2)(x, y) is positive
these spins have the tendency to align. If this is the case for an arbitrary distance
|x− y| between the spins, then the system is spontaneously magnetized. If we knew
all the correlation functions then we could reconstruct the Gibbs state.
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We would like to point to a crucial difference between classical spin models and
Euclidean quantum field theories on lattices. In spin models the temperature depen-
dence originates from the temperature-dependent Boltzmann factor of the probabil-
ity measure

dPβ(ω)= 1

ZΛ(β)
e−βH(ω)dμ(ω) (6.39)

that is used to calculate expectation values. In a lattice field theory with probability
measure

dPβ(ω)= 1

ZΛ(β)
e−S(ω)dμ(ω), (6.40)

the temperature dependence arises from the geometry of the underlying lattice. The
lattice has extent β ∝ 1/T in the imaginary time direction and the (bosonic) lattice
fields are periodic with period β .

6.4 Variational Principles

There exists a variational characterization of the partition function and effective ac-
tion which is useful in approximations, in particular the mean field approximation.1

The interested reader may also consult [19]. We use the notation for the continuous
spin models to underline the connection to lattice field theories.

6.4.1 Principle for Gibbs State and Free Energy

Let P be a probability measure with density p ≥ 0 over the configuration space Ω .
Then we have

dP(ω)= p(ω)dμ(ω) with
∫

Ω

dP(ω)= 1. (6.41)

The Boltzmann–Gibbs–Shannon entropy is defined as

SB(P )=−
∫

dμ(ω)p(ω) logp(ω), (6.42)

where the single spin distribution measure μ depends on the geometry of the tar-
get space but not on the density p. The free energy has the following variational
characterization:

βF = inf
P

(
β

∫
dP(ω)H(ω)− SB(P )

)
, (6.43)

1There exists an alternative variational approach for the mean field approximation, which is based
on Jensen’s inequality, see for example [18].
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where the infimum is to be taken with respect to all possible probability mea-
sures on Ω . We implement the constraint in (6.41) via the addition of the term
λ(

∫
dP(ω)− 1) with Lagrange multiplier λ. Then the variation of the expression in

brackets in (6.43) with respect to p(ω) leads to

0 =
∫

dμ(ω)δp(ω)
(
βH(ω)+ logp(ω)+ λ

) �⇒ p(ω)= Ce−βH(ω).

The constant C is fixed by the requirement that pdμ integrates to one. Hence the
unique infimum with respect to all probability measures is just the Gibbs measure

dPβ(ω)= 1

Z(β)
e−βH(ω)dμ(ω) with Z(β)=

∫
dμ(ω)e−βH(ω). (6.44)

By inserting this result into (6.43) we obtain the well-known expression

F(β)=− 1

β
logZ(β) (6.45)

for the free energy.

6.4.2 Fixed Average Field

The equivalent in statistical physics to the effective action in quantum field theory is
the free energy functional with prescribed (inhomogeneous) average spin field mx .
Its variational characterization is given by (6.43) with additional constraints,

βF [m] = inf
P

(
β

∫
dP(ω)H(ω)− SB(P )

∣∣∣
∣

∫
dP(ω)sx =mx

)
. (6.46)

This means that we minimize with respect to probability densities with prescribed
average spins. There is one constraint for every lattice site and the constraints are
given by the average spins mx . Since the set of probability measures is convex, the
resulting functional F [m] is also convex.

Next we show that the functional F is the Legendre transform of the Schwinger
functional W . Thereby we implement the constraints in (6.46) with the help of a
Lagrange multiplier field jx . First we minimize

βF [m] = inf
P

(∫
dP(ω)

{
βH(ω)− (j, s −m)

}− SB(P )

)

with respect to all probability measures, where (j, s) = ∑
x jxsx denotes the �2

scalar product. The minimizing measure is given by

dPj (ω)= 1

Z[j ]e−βH(ω)+(j,s)dμ(ω) with Z[j ] =
∫

dμ(ω)e−βH(ω)+(j,s).
(6.47)

Inserting this result into (6.46) yields the functional,

βF [m] = (j,m)−W [j ] with W [j ] = logZ[j ]. (6.48)
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The Lagrangian multiplier field j must be chosen such that the constraints

mx =
∫

dPj (ω)sx = δW [j ]
δjx

(6.49)

are fulfilled on all sites. The formula (6.48) and (6.49) tell us that F [m] is the Leg-
endre transform of the Schwinger function, i.e.

βF [m] = sup
j

(
(j,m)−W [j ])= (LW)[m]. (6.50)

If one is interested only in the average magnetization rather than in general cor-
relation functions, then it suffices to evaluate the free energy functional F [m] for a
homogeneous average field mx =m. Since for any translational invariant system the
average of sx is equal to the average of M =∑

x sx/V we are lead to the following
definition of the free energy density for a homogeneous field:

βf (m)= 1

V
inf
P

(
β

∫
dP(ω)H(ω)− SB(P )

∣∣∣∣

∫
dP(ω)M =m

)
. (6.51)

This density is given by the Legendre transform of the Schwinger function,

βf (m)= (Lw)(m) with w(j)= 1

V
log

∫
dμ(ω)e−βH(ω)+j∑ sx . (6.52)

The transition from finite temperature spin models to lattice field theories is made
by the substitutions

βH → S/�, βF [m]→ Γ [ϕ]/�, βf (m)→ u(ϕ)/�. (6.53)

For example, the effective action of a quantized scalar field is given by

Γ [ϕ] = inf
P

(∫
dP(ω)S(ω)− �SB(P )

∣∣∣∣

∫
dP(ω)φx = ϕx

)
, (6.54)

where one minimizes with respect to probabilities on the space of lattice fields with
prescribed average field ϕx . The convex functional Γ is the Legendre transform of
the Schwinger functional,

Γ [ϕ] = (LW)[ϕ] with W [j ] = log
∫

dμ(ω)e−S(ω)/�+(j,φ). (6.55)

For a homogeneous ϕ the effective action density defines the effective potential

u(ϕ)= (Lw)(ϕ) with w(j)= 1

βV
log

∫
dμ(ω)e−S(ω)+j

∑
φx . (6.56)

In the classical limit the effective action Γ converges to the classical action and the
effective potential to the classical potential. The variational representations intro-
duced above form an adequate starting point for the useful mean field approximation
discussed in the Chap. 7.
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6.5 Programs for the Simulation of the Ising Chain

Here you find the C-programs

• glgew1d.c
• constantsising.h
• stdmcising.h

used in this chapter. The program glgew1d.c provides the basis for the simulation
of the one-dimensional Ising model with the energy function

H(ω)=−J
N∑

x=1

sxsx+1 − h

N∑

x=1

sx, sx =±1. (6.57)

The first 500 iterations are necessary to thermalize the system. Afterwards, only
every 20th configuration is evaluated in order to suppress correlations between the
configurations. The program should be self-explanatory. It reads the header files
constantsising.h containing the global variables and constants N , M , MG,
MA and J as well as stdmcising.h. The values for the magnetization at tem-
perature T = 2.0 are saved in the file iisingT=2.0. This file is stored in the
subdirectory is1data of the directory containing the program glgew1d.c.

glgew1d.c (needs constantsising.h and stdmcising.h):

1 /* program ising1d.c */
2 /* simulation of ferromagnetic 1d Ising-model */
3 /* calculates magnetization for different values */
4 /* of magnetic field. Saved in file ./is1data/isingT */
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <math.h>
8 #include <string.h>
9 #include <time.h>

10 #include "constantsising.h"
11 #include "stdmcising.h"
12 int main(void)
13 {
14 srand48(time(NULL));
15 /* read temperature */
16 puts("temperature (3 digits) = ");
17 scanf("%3s",temp);
18 beta=1/atof(temp);
19 strncat(ising1,temp,3);
20 a=4*beta*J;
21 fp=fopen(ising1,"w");
22 fprintf(fp,"# N = %i , T = %.3f\n",N,1/beta);
23 fprintf(fp,"# magnetization 1-d Ising\n");
24 /* initial configuration */
25 for (i=0;i<N;i++)
26 s[i]=-1; */ cold initial configuration */
27 /* if (rand()<1073741823) s[i]=1 else s[i]=-1 */
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28 /* coming to equilibrium */
29 h=-5.0;b=2*beta*h;
30 /* calculate Boltzmann weights */
31 boltzmann();
32 for (i=0;i<MG;i++) mcsweep(s);
33 /* simulation and calculationfor h
34 /* from -5 to 5 in steps of 0.5 */
35 for (i=-10;i<11;i++){
36 h=0.5*i;b=2*beta*h;
37 boltzmann();check();
38 ann=0;mean1=0;
39 for (j=0;j<M;j++){
40 mcsweep(s);
41 mean1=mean1+moments(1,s);
42 };
43 printf(\"accepted %.2f\n",(float)ann/(N*MA*M));
44 fprintf(fp,"%4.1f %6.3f\n",h,2*mean1/M);
45 };\draw (100,16)node{$1$};
46 fclose(fp);
47 return 0;
48 }

constantsising.h defines constants and global variables:

1 /* file constantsising.h */
2 /* constants N,M,MG,MA,J */
3 /* variables s[N], ising1[], etc. */
4 #define N 128 /* number of lattice points */
5 #define M 10000 /* number of interations */
6 #define MG 500 /* equilibrium */
7 #define MA 20 /* every MAth configuration is measured */
8 #define J 1.0
9 short nn,si,s[N],test[3][5];

10 unsigned int j,k;
11 double mean1;
12 float a,b,vorz,beta,boltz[3][5],h;
13 int i,ann=0;
14 FILE *fp;
15 char temp[20],ising1[]="./is1data/isingT=";

stdmcising.h contains functions called by the main program glgew1d.c. The con-
stants, variables and quantities

a = 4βJ and b= 2βh,

as declared in constantsising.h are used. The arrays test and boltz are needed
for the Mont Carlo iterations. The first argument of these arrays is the value

1 /* header file stdmcising.h */
2 /* functions check and boltz: */
3 /* provides arrays test and boltzmann.*/
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4 /* mcsweep: MA sweeps over lattice */
5 /* moments: calculates average of spins */
6 void check(void)
7 {
8 if (b>0){
9 test[2][4]=1;test[2][2]=1;test[0][2]=0;test[0][4]=0;

10 if (b>a) {test[0][0]=0;test[2][0]=1;}
11 else {test[0][0]=1;test[2][0]=0;};
12 }
13 else{
14 test[2][0]=0;test[0][2]=1;test[2][2]=0;test[0][0]=1;
15 if(a+b>0) {test[2][4]=1;test[0][4]=0;}
16 else {test[2][4]=0;test[0][4]=1;};};
17 }
18 void boltzmann(void)
19 {
20 boltz[2][4]=exp(-a-b);boltz[2][2]=exp(-b);
21 boltz[2][0]=exp(a-b);boltz[0][4]=exp(a+b);
22 boltz[0][2]=exp(b);boltz[0][0]=exp(-a+b);
23 }
24 void mcsweep(short *s)
25 {
26 int p,q;
27 for (p=0;p<MA;p++)
28 for (q=0;q<N;q++){
29 nn=s[(q+1)%N]+s[(q+N-1)%N]+2;
30 si=s[q]+1;
31 if (test[si,nn]==0) {s[q]=-s[q];ann=ann+1;}
32 else
33 if (drand48()<boltz[si][nn]){
34 s[q]=-s[q];ann=ann+1;};
35 };
36 }
37 /* calculation of moments */
38 double moments(short n,short *s)
39 {
40 int p,sum=0;
41 for (p=0;p<N;p++)
42 sum=sum+s[p];
43 /*sum=sum+pow(s[il],n);*/
44 return (double)sum/N;
45 }

of the spin sx plus 1. The next argument is equal to the sum of the spins of the nearest
neighbors plus 2. If the energy decreases during the change of sx , we set test = 0.
Otherwise we set test = 1. The Boltzmann weights are stored in the array boltz,
in order to spare computing time for the calculation of the exponential function.
The basic routine is mcsweep, where one finds the MA ·MC iterations through the
lattice. It is tested how often a change is accepted. We determined the magnetization
as a function of h for different temperatures with this code. Figure 6.1 shows the
results of the Monte Carlo simulations for N = 128. The agreement between the
MC-data for N = 128 and the exact solution for N =∞ is quite remarkable.
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6.6 Problems

6.1 (Two-dimensional Ising model: part I) Determine the inner energy density and
the magnetization via the summation over all configurations for a 2 × 2, 3 × 3 and
4 × 4 lattice. Assume thereby periodic boundary conditions and choose β = 0 to 1
in steps of 0.05. Assume that the external field h vanishes and set J in

H =−J
∑

〈xy〉
sxsy

equal to 1. Plot your results.
Calculate both 〈m〉 and 〈|m|〉. Is it really necessary to calculate 〈m〉?

6.2 (Two-dimensional Ising model: part II) Adapt the program on p. 114 in order
to simulate the two-dimensional Ising model via the Metropolis algorithm. Choose
β = 0.4406868 and h = 0. Perform the simulations on 4 × 4, 8 × 8 and 32 × 32
lattices with 200000 sweeps over the lattice each time. Determine

u= 1

V
〈H 〉, 〈|m|〉 and

〈
m2〉.

Compare the result for the 4×4 lattice with the outcome of the analytical calculation
in Problem 6.1.

6.3 (Minima of energy function) Find the configurations with minimal energy of
the following spin models:

1. The Ising chain with first and second neighbor interactions

H =−J1

∑

x

sxsx+1 − J2

∑

x

sxsx+2, sx ∈ {−1,1}.

Consider both positive and negative values of the couplings J1, J2.
2. The one-dimensional clock model

H =−Jc
∑

x

cos
{
2π(nx − ny +Δ)/q

}

for positive J and all values of Δ.
3. The antiferromagnetic Ising model on a triangular lattice,

H = J
∑

〈x,y〉〉
sxsy, sx ∈ {−1,1}

with J > 0.
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Chapter 7
Mean Field Approximation

Since only a few lattice models can be solved explicitly one is interested in efficient
approximation schemes. A simple and universally applicable approximation is the
mean-field approximation (MFA) which yields qualitatively correct results for many
lattice systems. When applied to ferromagnets it is often called the Curie–Weiss ap-
proximation and when applied to lattice gases the Bragg–Williams approximation.
The approximation appeared in PIERRE WEISS’ work back in 1907 [1], where,
building on earlier results of PAUL LANGEVIN [2], he obtained a model which ex-
plains the Curie point below which ferromagnetism sets in. Often when one deals
with systems with very many degrees of freedom one uses the universally applicable
MFA to gain information about the qualitative behavior of the system. In some cases
the approximation even produces exact results, for example for universal quantities.

In the MFA one replaces the microscopic interaction of a spin with its neighbor-
ing spins by an approximate interaction of the spin with the averaged spin generated
by all other spins. In the mean-field ensemble the spin variables are independently
distributed and under homogeneity assumptions on the interactions they are even
equally distributed. Hence the calculation of the free energy density or the order
parameter, e.g. the magnetization of the system, reduces to a single spin problem. In
this chapter we discuss the approximation for spin models and Euclidean lattice field
theories in arbitrary dimensions. The MFA is discussed in many books on statistical
mechanics and field theory. It may be useful to consult [3–5].

7.1 Approximation for General Lattice Models

We begin with the variational characterization of the free energy and the free energy
with fixed average field as outlined in Sect. 6.4. In the MFA we only admit prod-
uct probability measures on the configuration space Ω in the variational principle
(6.46),

dP(ω)=
∏

x

dνx(sx), dνx(s)= dμ(s)px(s), (7.1)
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where νx(s) is the probability measure for the spin at site x and μ the site-
independent single spin distribution. Since we minimize the free energy functional
only on a subset of all probability measures, the energy functional Fmf[m] in the
mean -field approximation bounds the exact functional F [m] from above,

Fmf[m] ≥ F [m]. (7.2)

Note that in contrast to the set of probability measures the set of product measures
is not convex such that Fmf need not be convex. For a product probability measure
we have

dP(ω) logp(ω)=
∏

x

dνx(sx)
∑

y

logpy(sy),
∫

dνx(s)= 1,

such that the entropy of the total system is equal to the sum of single-site entropies,

SB(P )=
∑

x

sB(px), sB(px)=−
∫

dνx(s) logpx(s). (7.3)

In addition the constraint on the probability measure P(ω) in (6.46) turns into V

independent constraints for the single-site measures νx ,
∫

dνx(s)s =
∫

dμ(s)px(s)s =mx. (7.4)

To proceed we must specify the energy functions to be considered. For general spin
systems the energy has the form

H(ω)=−
∑

x �=y
Jxysxsy +

∑

x

Qx(sx), (7.5)

where the last term contains a possible coupling to an external field or a self-
interaction of the spin variables. Due to the constraints (7.4) we find the average
energy

∫
dP(ω)H(ω)=−

∑

x �=y
Jxymxmy +

∑

x

∫
dνx(s)Qx(s). (7.6)

It follows that for a product measure the free energy functional takes the form

Fmf[m] = −
∑

x �=y
Jxymxmy +

∑

x

αx(mx), (7.7)

where the function αx only depends on the prescribed average field on site x and
has the variational characterization

αx(mx)= inf
px

(∫
dνx(s)

{
Qx(s)+ T logpx(s)

}
∣∣∣
∣

∫
dνx(s)s =mx

)
. (7.8)

Thus for product measures the difficult variational problem on the space of proba-
bility measures on Ω simplifies considerably to V variational problems on single
sites. The minimizing probability density px in (7.8) is given by

px(s)= 1

zx(jx)
e−βQx(s)+jxs , zx(jx)=

∫
dμ(s)e−βQx(s)+jxs , (7.9)
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whereby the multiplier jx is determined by the self-consistency equation

mx =
∫

dμ(s)px(s)s = dwx

djx
, wx(jx)= log zx(jx). (7.10)

This key equation is often called the gap equation. Inserting the result for the density
into the expression for αx finally yields

βαx(mx)= jxmx −wx(jx)= (Lwx)(mx). (7.11)

To summarize: In the MFA the free energy functional Fmf[m] for a prescribed aver-
age field is given by (7.7), whereby αx is proportional to the Legendre transform of
wx = log zx with one-site partition function zx given in (7.9).

Let us turn to homogeneous spin systems with Qx = Q and assume that the
average field is constant, in which case

∑

x �=y
Jxymxmy = V

2
J̃m2, with J̃ = 2

V

∑

x �=y
Jxy. (7.12)

For lattice models with Jxy = J for nearest-neighbor pairs x, y and zero otherwise,
the effective coupling is

J̃ = qJ, (7.13)

where q denotes the coordination number, i.e. the number of nearest neighbors of a
given site. For a d-dimensional hyper-cubic lattice q = 2d . Homogeneous systems
have an extensive free energy and it is advantageous to proceed with the intensive
free energy density. In the MFA this density is given by

fmf(m)=−1

2
J̃m2 + T (Lw)(m); (7.14)

and hence we remain with evaluating the Legendre transform of

w(j)= log z(j), with z(j)=
∫

dμ(s)e−βQ(s)+js . (7.15)

To calculate Lw we must solve the gap equation. Note that in the MFA the dimen-
sion of the lattice enters only via the relations (7.12, 7.13) between the microscopic
couplings and the effective coupling J̃ .

7.2 The Ising Model

Let us apply the general results to Ising models on hyper-cubic lattices with a single
spin (Bernoulli) measure

dμ(ω)=
∏

x

dμ(sx), dμ(s)= 1

2
δ(s − 1)ds + 1

2
δ(s + 1)ds. (7.16)
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Fig. 7.1 Free energy density as a function of the magnetization m at different temperatures T/Tc

For a vanishing magnetic field in (6.1) the interaction term Q in (7.15) is absent
and we obtain the simple one-site partition function z(j)= 2 cosh(j). Note that in
contrast to the discrete microscopic spin the average field in the free energy density

fmf(m)=−dJm2 + T (Lw)(m) (7.17)

is a continuous variable with values in the interval [−1,1]. To calculate the Legendre
transform of w(j)= log(2 cosh j) we solve the gap equation m= tanh(j) for j (m)
and insert the result into

(Lw)(m)=mj(m)− log
{
cosh j (m)

}
. (7.18)

Next we insert the Legendre transform into the defining equation (7.17) for the free
energy density and obtain the simple expression

fmf(m)=−dJm2 + 1+m

2β
log(1+m)+ 1−m

2β
log(1−m). (7.19)

Figure 7.1 shows a plot of the density in units of J̃ in the regime near the critical
temperature. We observe that the curvature at the origin changes sign at the tem-
perature Tc,mf = 2dJ . This defines the critical temperature in the MFA. Below this
temperature the free energy shows a local maximum at the origin as well as two
global minima at ±m0. Above the critical temperature there is one global minimum
at the origin.

The variational characterization of the free energy functional F [m] as discussed
in Sect. 6.4 emphasizes that

Pmf(m)= 1

Zmf
e−βVfmf(m) (7.20)

is to be interpreted as the probability distribution for finding the average field m in
the MFA. Clearly, for large volumes this distribution shows distinct maxima at the
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Fig. 7.2 Determination of the critical temperature in the MFA. The continuous lines through the
origin belong to h= 0 and the dashed lines to h �= 0

minima of the free energy density. A minimum m0 of the density (7.19) solves the
gap equation

2dJm0 = 1

2β
log

1+m0

1−m0
�⇒ m0 = tanh(2dJβm0). (7.21)

To simplify this self-consistency equation for the mean field we define the dimen-
sionless quantity x := 2dJβm0, which obeys

T

2dJ
x = tanhx. (7.22)

The slope of the linear function on the left-hand side is greater than the slope of the
tanh-function on the right-hand side for

T > Tc,mf = 2dJ, (7.23)

and then there exists only the solution x = 0. If the temperature is less than Tc,mf,
then the transcendental equation (7.22) admits three solutions: x = 0 and x =±m0.
To gain further insight we couple the spins to an external field by adding the term
−h∑ sx to the energy function. This amounts to adding the term −hm to the free
energy density fmf such that now the minimizing magnetization obeys

m0 = tanh(2dJβm0 + βh)= tanh

(
Tc

T
m0 + βh

)
. (7.24)

Solutions of this gap equation are given by the intersection points in Fig. 7.2. For
h �= 0 the system is magnetized even for very high temperatures T � Tc.

7.2.1 An Alternative Derivation

Here we present a derivation of the MFA as it is contained in many textbooks on
statistical mechanics, see for example [6]. The main idea is the substitution of the
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microscopic interaction of a spin with its neighbors by an averaged interaction with
all spins:

Jxy → 1

V

∑

y

Jxy = J̃

V
. (7.25)

For translationally invariant systems the effective coupling strength J̃ does not de-
pend on the site. In models with short-range interaction we have J̃ = qJ with co-
ordination number q . With the approximation (7.25) the energy function (6.1) be-
comes

H →Hmf =−V J̃

2
m2(s)− V hm(s), m(s)= 1

V

∑
sx. (7.26)

For the Ising model with sx =±1 the mean field m(s) takes its values in

M = {−1,−1+ δ,−1+ 2δ, . . . ,1− δ,1}, δ = 2

V
.

There are V (1 + m)/2 spins pointing “upward” and V (1 − m)/2 spins pointing
“downward” and the number of possible spin configurations with fixed m ∈M is
equal to

d(m)= V

[ 1
2V (1+m)]![ 1

2V (1−m)]! . (7.27)

With the help of Stirling’s formula

log(n!)= n(logn− 1)+ o(n)

we obtain the following approximation for the partition function:

Zmf =
∑

m∈M
d(m)e−βHmf(m) =

∑

m

e−βVfmf(m), (7.28)

where fmf(m) is the free energy density (7.19), up to corrections of order o(V )/V .
In the thermodynamic limit these corrections vanish and at the same time m be-
comes a continuous field m ∈ [−1,1].

7.3 Critical Exponents α,β,γ, δ

The mean field predicts that the Ising model shows a phase transition from an
ordered ferromagnetic phase to a disordered paramagnetic phase. More sophisti-
cated methods presented in the following chapters show that the mean-field pre-
diction is correct in two and more dimensions. A critical temperature separates
the low-temperature ferromagnetic phase with non-zero magnetization from the
high-temperature paramagnetic phase without magnetization. The free energy is no
longer differentiable at the critical temperature T = Tc and the resulting singulari-
ties are parametrized by universal critical exponents. In this section we calculate the
most important critical exponents in the mean-field approximation.
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Table 7.1 Most commonly
used critical exponents for
magnetic systems

zero-field specific heat α ch ∼ |t |−α
zero-field magnetization β m∼ tβ

zero-field isothermal susceptibility γ χT ∼ |t |−γ
critical isotherm (t = 0) δ h∼ |m|δsgn(m)

correlation length ν ξ ∼ |t |−ν
pair correlation function at Tc η G(x)∼ 1/rd−2+η

Let us introduce the reduced temperature, i.e. the relative deviation of the tem-
perature from the critical temperature,

t = Tc − T

Tc
. (7.29)

The critical exponent λ associated with a macroscopic observable g(t) is defined by

g(t)∼ |t |λ. (7.30)

This equation only represents the asymptotic behavior of the function g(t) as t → 0.
More generally one might expect

g(t)∼A|t |λ(1+ btλ1 + · · ·) with λ1 > 0. (7.31)

The definitions of the most commonly used critical exponents are listed in Table 7.1.
The exponent δ characterizes the singular function h= h(m) and the exponent η the
anomalous behavior of the two-point function at the critical temperature. In compil-
ing Table 7.1 we have made the unjustified assumption that the critical exponents
associated with a given thermodynamic variable are the same as T → Tc from above
and below. Early series expansions and numerical results suggested that this was the
case, but it was only with the advent of the renormalization group that it was indeed
proved to be so. A common notation was using a prime to distinguish the value of
an exponent as T ↑ Tc from the value as T ↓ Tc.

In what follows we obtain the mean-field values of the critical exponents α,β, γ
and δ in the Ising model. They can be extracted from our previous results for the free
energy and magnetization. Later we shall argue that the critical exponents are very
universal: two spin models in the same dimension for which the order parameter has
the same symmetry should possess identical critical exponents.

7.3.1 Susceptibility

Above the critical temperature the magnetization m0(h) in Eq. (7.24) approaches
zero for h→ 0 and the susceptibility

χ =
(
∂m0

∂h

)∣∣∣∣
h=0

=
∑

y

(〈sxsy〉 − 〈sx〉〈sy〉
)
∣∣∣∣
h=0

(7.32)
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fulfills the Curie–Weiss law

χ
m0(0)=0= β(χTc + 1) �⇒ χ = 1

T − Tc
, (7.33)

where we made use of (7.21). Hence the susceptibility diverges at the critical point
and we obtain for T ↓ Tc or T ↑ Tc the scaling law

χ ∼ |t |−1. (7.34)

The critical exponent of the susceptibility is γ = 1.

7.3.2 Magnetization as a Function of Temperature

Below the critical temperature and for h > 0 the magnetization m0(h) is given by
the largest solution to (7.24). In the limit h ↓ 0 we find a spontaneous magnetiza-
tion m0(T ) which approaches zero for temperatures T ↑ Tc. This justifies a series
expansion of the tanh-function in (7.21) in powers of m0 with the result

m0 = Tc

T
m0 − 1

3

(
Tc

T
m0

)3

+ · · · ,

where Tc = 2dJ . As expected, this equation has three solutions, given by

m0 = 0 and m0 ≈± T

Tc
(3t)1/2. (7.35)

The first solution belongs to an unordered paramagnetic state and the two other so-
lutions describe ordered ferromagnetic low-temperature phases. The ordered states
minimize the free energy density at low temperature. Figure 7.3 illustrates the tem-
perature dependence of the spontaneous magnetization m(T ). It approaches zero as
T ↑ Tc according to

m0(T )= T

Tc
(3t)1/2. (7.36)

Since m0 �= 0 corresponds to an ordered and m0 = 0 to an unordered state, we call
the spontaneous magnetization an order parameter of the system. We associate the
critical exponent β with the order parameter of the transition,

m0(T )∼ tβ . (7.37)

Hence the MFA predicts a critical exponent1 β of 1/2.

1The exponent β should not be confused with the inverse temperature.
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Fig. 7.3 The temperature
dependence of the
magnetization m in the
mean-field approximation

7.3.3 Specific Heat

In the MFA the inner energy density of the Ising model is given by

u= ∂

∂β
(βf )=−dJm2

0 − hm0, (7.38)

such that the specific heat is given in terms of the magnetization by

c= ∂u

∂T
=−(Tcm0 + h)

∂m0

∂T
, Tc = 2dJ. (7.39)

Above Tc the vanishing magnetization leads to a vanishing specific heat and below
Tc the gap equation (7.21) implies

c=− (Tcm0 + h)2

T Tc − T 2/(1−m2
0)
.

We set h = 0 and rewrite the denominator by using the formula (7.35) for m0 at
temperature T � Tc. This yields

T Tc − T 2

1−m2
0

≈ T (Tc − T )− T 2m2
0 ≈ tT Tc

(
1− 3T 3

T 3
c

)
.

Taking into account that (Tcm0)
2 ≈ 3tT 2 we finally arrive at

c≈− T

Tc

3

1− 3T 3/T 3
c

T↗Tc→ 3

2
. (7.40)

This means that the specific heat jumps at T = Tc from the value 3kB/2 below Tc

to the value 0 above Tc.
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7.3.4 Magnetization as a Function of the Magnetic Field

The magnetization as a function of the magnetic field h follows from the self-
consistency equation (7.24). We expand the right-hand side of this equation at
T = Tc up to third order in h according to

m0 =m0 + βch− 1

3
(m0 + βch)

3 + · · · ⇒ βch= 1

3
(m0 + βch)

3 + · · · .
(7.41)

The consistent assumption βch)m0 leads to

m0 ≈ (3βch)
1/3, (T = Tc). (7.42)

In general, the scaling law

m0 ∼ h1/δ at T = Tc (7.43)

defines the critical exponent δ. Hence, our mean-field studies yield a critical expo-
nent of δ = 3.

7.3.5 Comparison with Exact and Numerical Results

This section is devoted to the comparison of the results of the mean-field approxima-
tion with the exact ones near the phase transition. The critical temperature Tc in the
MFA only depends on the number of nearest neighbors (the coordination number)
q according to the relation

Tc,mf = qJ (7.44)

This simple result points to a first deficiency of the MFA: it predicts a phase tran-
sition for the Ising chain at a Tc > 0 in conflict with the exact result. In Table 7.2
we compare the mean-field predictions for the critical temperatures of Ising mod-
els on various two- and three-dimensional lattices with the known values. Note that
with increasing coordination number q the MFA becomes more accurate. The MFA
correctly predicts scaling laws for the magnetization and susceptibility as functions
of the reduced temperature and for the magnetic field as a function of the mag-
netization in the vicinity of the critical point. But the mean-field critical exponents
β = 1/2, γ = 1 and δ = 3 are independent of the space dimension and disagree with
the exactly known exponents in two dimensions, see Table 7.3. In addition the MFA
predicts a jump of the specific heat at Tc in contrast to the exact solution in two
dimensions which shows a logarithmic singularity. Similar differences are seen in
three dimensions, see Table 7.3. However, the critical exponents of the MFA are the
correct ones in d > 4 dimensions.

We summarize the main results of the mean-field approximation:

• The dimension d of the lattice enters the MFA only via Tc,mf = 2dJ .
• The order of the phase transition is predicted correctly for d ≥ 2.
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Table 7.2 Critical
temperatures depending on
dimension d and number q of
neighbors

Lattice d q Tc,mf/Tc Tc/Tc,mf

square 2 4 1.763 0.567

triangular 2 6 1.648 0.607

simple cubic 3 6 1.330 0.752

body-centered cubic 3 8 1.260 0.794

face-centered cubic 3 12 1.225 0.816

Table 7.3 Critical exponents of the Ising model in two and three dimensions [7, 8]

Quantity d = 2 (exact) d = 3 Mean-field

zero-field specific heat α 0 (log.) 0.110(1) 0 (jump)

zero-field magnetization β 1/8 0.3265(3) 1/2

zero-field isothermal susceptibility γ 7/4 1.2372(5) 1

critical isotherm (t = 0) δ 15 4.789(2) 3

correlation length ν 1 0.6301(4) 1/2

pair correlation function at Tc η 1/4 0.0364(5) 0

• The MFA predicts a Tc,mf which is greater than the exact Tc in d ≥ 2.
• The critical exponents differ from the exact Tc for d < 4.
• The MFA does not account for short-range interactions effects.
• The MFA may lead to long-range correlations.

7.4 Mean-Field Approximation for Standard Potts Models

We minimize the free energy of the standard Potts model with the energy (6.10) on
the set of product probabilities,

P(ω)=
∏

x

px(σx), σx ∈ {1, . . . , q}. (7.45)

Due to translational invariance px does not depend on the site and without magnetic
field we obtain the free energy density

fmf(β,pn)=−dJp
q∑

n=1

p2
n + T

q∑

n=1

pn logpn, (7.46)

where pn denotes the probability of σx = n. Clearly, in the symmetric phase all
probabilities are equal to 1/q . We now minimize the free energy density with re-
spect to the probability p1 of σ1 under the assumption of equal p2, . . . , pq . We
parametrize the corresponding probabilities as

p1 = 1

q
+ q − 1

q
x, pn>1 = 1

q
− x

q
with − 1

q − 1
≤ x ≤ 1,
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Fig. 7.4 The normalized free energy density for Potts models with q = 3,4 in the MFA

where the value x = 0 characterizes the symmetric phase. Setting q − 1 = q ′ the
free energy density reads

fmf(x)=−dJp

q

(
1+ q ′x2)+ 1+ q ′x

βq
log

1+ q ′x
q

+ q ′(1− x)

βq
log

1− x

q
(7.47)

and its curvature at the origin vanishes for 2dJp = qT . This defines the temperature

T ′
c =

2dJp
q

(7.48)

below which the symmetric phase is unstable. But for Potts models with q ≥ 3
the free energy density has a second minimum at x0 > 0 for temperatures near T ′

c .
The second minimum turns into an absolute minimum below a critical temperature
Tc > T ′

c . When the temperature drops the order parameter x jumps at the critical
temperature

Tc = q − 2

q − 1

dJp

log(q − 1)
> T ′

c (7.49)

from 0 to x0 = (q − 2)/(q − 1). Figure 7.4 illustrates the change of the free energy
density �fmf(x)= fmf(x)− fmf(0) in units of kBT for Potts models with q = 3,4
and temperatures close to Tc . With increasing q we observe an increasing jump of
the order parameter and the first-order phase transition gets stronger. For q = 2 the
jump vanishes and the phase transition is of second order.

For large q the inner energy, free energy and latent heat per site at the critical
point have the following expansions:

emf,c $−dJp
(

1− 2

q
. . .

)

βcfmf,c $− logq

(
1+ 1

q
. . .

)
(7.50)

�mf,c $ dJp

(
1− 3

q
. . .

)
.
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Fig. 7.5 The possible values
of the magnetization m in the
complex plane for the planar
Potts model (clock model)
with five states

To leading order in 1/q they agree with the exact values for the Potts models on a
square lattice. This leads to the conjecture that the mean-field treatment of the Potts
model provides an accurate description of the transition in two or higher dimensions
if the number of components q is large.

7.5 Mean-Field Approximation for Zq Models

In the MFA for the planar Potts models with energy functions (6.17) we minimize
the free energy with respect to the product probabilities

P(ω)=
∏

x

px(θx), θx ∈
{
θn = 2πn

q

∣∣∣∣n= 1,2, . . . , q

}
, (7.51)

where we fix the average field
q∑

n=1

px(θn)e
iθn =mx. (7.52)

The average spin mx lies in the convex region in the complex plane spanned by
the q extremal points exp(iθn), see the shaded region in Fig. 7.5. If all probabilities
are zero except pn = 1, then the magnetization points towards the nth corner of the
q-gon and the corresponding states are pure states of the planar Potts model. The
average energy for fixed mx is given by

∑

ω

p(ω)H(ω)=−Jp

2

∑

〈x,y〉

(
mxm

∗
y +m∗

xmy

)
. (7.53)

For a homogeneous magnetization px does not depend on the site and the free en-
ergy density takes the form

fmf(m)= inf{pn}

(
−dJpmm∗ + T

∑

n

pn logpn

∣∣∣
∣
∑

n

pneiθn =m

)
, (7.54)
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where we used the abbreviation p(θn)= pn. The solution of this simple variational
problem with constraints leads to

fmf(m)=−dJpmm∗ + T (Lw)(m), ew(j) =
∑

n

exp
(
jeiθn + j∗e−iθn

)

(7.55)

with the Legendre transform

(Lw)(m)= sup
j

{
jm+ j∗m∗ −w(j)

}
. (7.56)

However, for the models with three and four states we can minimize (7.54) directly.
To do this we introduce the moments of the probability distribution

m� =
∑

n

pneinθ� =m∗
q−�, with mq = 1,m1 ≡m. (7.57)

The individual probabilities can be reconstructed from the moments according to

pn = 1

q

(
1+ e−iθnm+ eiθnm∗)+ 1

q

q−2∑

�=2

m�e
−i�θn . (7.58)

The higher moments m2, . . . ,mq−2 as functions of the prescribed order parameter
m follow from the requirement that the entropy contribution

∑
pn logpn to (7.54)

is minimal. For the 3-state model the last sum in (7.58) is absent and m determines
all {pn}. This leads to the free energy density

f
q=3
mf =−dJpmm∗ − T log 3+ T

3

3∑

n=1

(
1+ 2�(

eiθnm
))

log
(
1+ 2�(

eiθnm
))
.

(7.59)

The system shows a (weak) first-order phase transition at the critical temperature
Tc = 3dJp/(4 log 2). For the 4-state model we rewrite the free energy density as
sum of the densities of two Ising models with the coupling Jp/2 according to

f
q=4
mf = f

Ising
mf

(
Jp

2
,m1 +m2

)
+ f

Ising
mf

(
Jp

2
,m1 −m2

)
, (7.60)

where f Ising
mf is the free energy density of the Ising model as given in (7.19). It imme-

diately follows that the 4-state planar Potts model shows a second-order transition
at Tc = dJp . All planar Potts models with q > 4 show a second-order transition as
well and this fact is illustrated in Fig. 7.6. The critical temperature Tc,mf = dJp is
independent of q for q ≥ 4 and with increasing q the free energy density converges
quickly to the density at q →∞.

7.6 Landau Theory and Ornstein–Zernike Extension

LEV LANDAU developed his celebrated theory of Fermi liquids in 1956 [9, 10].
Some years later experiments indicated that the prediction of his theory were sat-
isfied, at least qualitatively, by liquid 3He. The phenomenological theory based on
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Fig. 7.6 The free energy density for the Zq models (planar Potts models) with q = 4 and q = 8 in
the vicinity of the critical temperature. The curves are labeled by T/Tc

Landau’s original ideas is outlined in [11] and further results based on the meth-
ods of quantum field theory are found in [12–14]. The Landau theory is an attempt
to formulate a general theory of second-order phase transitions2 and it is based on
very simple assumptions motivated by the MFA. The main assumption is that the
free energy can be expanded as a power series in the order parameter m, where only
those terms compatible with the symmetries of the system are admitted. Landau the-
ory not only predicts a phase transition but also allows to reproduce the mean-field
exponents showing clearly how they depend on the symmetry of the order param-
eter. Landau theory is an extension of the MFA and thus has similar shortcomings
as this approximation. In particular it fails to predict the correct critical exponents
below four dimensions. Many details of the Landau theory of phase transitions can
be found in the textbook [15].

Consider the free energy of a ferromagnet with real order parameter m. Without a
magnetic field the free energy is an even function ofm such that in a series expansion
only even powers of m occur,

fL(m)= f0 + a2m
2 + a4m

4 + · · · . (7.61)

The coefficients in this expansion depend on the parameters of the system and in
particular on the temperature. In case a4 > 0 the series can be truncated after the
term O(m4), because, as we shall see, subsequent terms cannot alter the critical
behavior of the system. The Landau free energy (7.61) is plotted as a function of m
for decreasing values of the coefficient a2 in Fig. 7.7. For positive a2 the minimum
of the free energy density is at m0 = 0 corresponding to a paramagnetic phase. For
negative a2 the minimum is at finite values ±m0 corresponding to a ferromagnetic

2Extensions of the theory are applicable to first-order phase transitions as well.
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Fig. 7.7 Landau free energy as function of the magnetization for different couplings a2

phase. The transition happens at a2 = 0 which means that this value corresponds to
the critical temperature. This suggests to write

a2 = ã2t (7.62)

with a positive ã2 and the reduced temperature t = (T − Tc)/Tc . We take a positive
coefficient a4 in the quartic term such that the magnetization is bounded.

7.6.1 Critical Exponents in Landau Theory

The equilibrium magnetization corresponds to the minimum of the free energy and
thus satisfies the equation

dfL

dm

∣∣∣∣
m0

= 2ã2tm0 + 4a4m
3
0 = 0. (7.63)

For negative t the minimum is at

m0 =±
√

ã2

2a4
(−t)1/2θ(−t) (7.64)
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such that we recover the mean-field critical exponent βmf = 1/2. The exponent α
for the specific heat follows from differentiating

fL(m0)= f0 − ã2
2

4a4
t2θ(−t)

twice with respect to the temperature. It is evident that the specific heat jumps at the
critical temperature,

cT ↑Tc − cT ↓Tc =
1

Tc

ã2
2

2a4

∣∣∣∣
Tc

(7.65)

and we recover the mean-field result αmf = 0. To find the exponents γ and δ we add
a magnetic field term −hm to the Landau free energy,

fL(m)= f0 − hm+ ã2tm
2 + a4m

4. (7.66)

The minimizing equilibrium magnetization is determined by

2ã2tm0 + 4a4m
3
0 = h. (7.67)

At the critical temperature the first term vanishes and the resulting relation m3
0 ∼ h

implies that the critical exponent δ attains the mean-field value δmf = 3. Finally,
the variation of the equilibrium magnetization m0 with the magnetic field at fixed
temperature follows from (7.67). Inserting the zero-field value (7.64) yields the sus-
ceptibility

χ = 1

3− sgn(t)

1

ã2|t | , (7.68)

and we recover the mean-field critical exponent γmf = 1.
The exponents extracted from the Landau free energy are the same as the mean-

field exponents of the Ising model. This is expected since the mean-field free energy
of the Ising model (7.19) has the reflection symmetry and hence must have the
expansion (7.61). To see this more explicitly we expand (7.19) in powers of m,

f
Ising
mf (J,m)= Tc

2
tm2 + T

12
m4 + · · · , Tc = qJ, (7.69)

from which we can read off the coefficients ã2 and a4. All reflection symmetric
models with real order parameter have the Landau expansion (7.61) and thus have
the same mean-field critical exponents. However, for some models (7.61) is not
the appropriate expansion. For example, the Zq -symmetry of the Potts models with
q ≥ 3 is compatible with a m3-term in the Landau free energy. This cubic term gives
rise to a first-order phase transition.

7.6.2 Two-Point Correlation Function

To determine the mean-field values of the exponents ν and η in Table 7.1 we need the
asymptotic form of the two-point correlation function. For that purpose we invoke
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the Ornstein–Zernike extension [16] of Landau’s theory. Inspired by the mean-field
result for the free energy with fixed inhomogeneous magnetization mx in (7.7) we
set

FL[T ,m] − FL[T ,0] = g

∫
ddx(∇m)2x +

∫
ddxfL(mx) (7.70)

with a space dependent magnetization. The first term on the right-hand side is the
lowest-order term in a gradient expansion of the spin-spin interaction and takes into
account the contribution from non-parallel spins. The second term is just the integral
over the Landau free energy density for a constant order parameter. Here we are only
interested in the long-distance behavior of the correlation function near a critical
point. Near the critical point the lattice spacing is small compared to the correlation
length and we may approximate lattice sums by integrals.

To calculate the correlation length and anomalous scaling dimension η we need
the connected two-point function of the microscopic spins,

Gc(x, y)= 〈sxsy〉 − 〈sx〉〈sy〉. (7.71)

To relate this correlation function to the free energy we recall that βF [m] is the
Legendre transform of the generating functional for the connected correlation func-
tions,

βF [m] = (LW)[m], W [j ] = log
∫

dμ(ω)e−βH(ω)+(j,s), (7.72)

cf. formula (6.48). Note that the second derivative of W is just the connected two-
point function Gc. Now we make use of the result (5.92) on p. 98 to relate the second
derivatives of W and F ,

β

∫
ddyGc(x, y)

δ2F

δmyδmz

= δ(x, z). (7.73)

This result means that the second functional derivative of βF is the inverse of the
connected two-point function,

Gc(x, y)= kT

(
δ2F

δmxδmy

)−1

. (7.74)

The critical exponents ν and η are defined in the vicinity of a second-order transition
point where the order parameter vanishes. Thus it suffices to take the Landau free
energy to lowest order in the average field,

FL[T ,m] = g

∫
ddx (∇m)2x + ã2t

∫
ddx m2

x, (7.75)

in order to find the two-point function near Tc. The second derivative of FL is

δ2FL

δmxδmy

=−2gΔxy + 2ã2tδ(x − y), (7.76)
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such that near the critical temperature the connected two-point function of the Lan-
dau theory takes the form

GL,c(x, y)= kT

2g
〈x| 1

−Δ+ ã2t/g
|y〉. (7.77)

Up to the temperature dependent factor it is just the two-point function of the free
scalar field with squared mass m2 = ã2t/g. It follows at once that for t > 0 and large
separations r = |x − y| in d ≥ 3 dimensions

GL,c(x, y)∼ e−mr

r(d−1)/2
, T > Tc. (7.78)

We conclude that near the critical point the correlation length ξ = 1/m diverges as
ξ ∼ t−1/2 implying that the Landau theory predicts a critical exponent ν = 1/2. On
the other hand, at the critical point t = 0 such that for d ≥ 3

GL,c(x, y)= Cd

rd−2
, T = Tc. (7.79)

This means that the Landau theory predicts η = 0. All critical exponents of the
Landau theory are collected in the last column of Table 7.3.

7.7 Antiferromagnetic Systems

We return to general spin systems with energy functions

H(ω)=−
∑

x �=y
Jxysxsy +

∑

x

Qx(sx), sx ∈T . (7.80)

For ferromagnetic couplings Jxy > 0 the contribution −Jxysxsy to the energy is
minimal for aligned spins and for anti-ferromagnetic couplings Jxy < 0 it is minimal
for anti-parallel spins. Hence, we call a system with negative couplings {Jxy} an
anti-ferromagnet. In this section we discuss such systems within the framework
of the MFA. We thereby consider translationally invariant systems with Qx = Q

and Jxy = Jx−y . In general, the equilibrium state and average magnetization are
not translationally invariant, in contrast to the energy function. Hence, in the MFA
we dismiss the assumption of identical site probabilities px for the spins. Indeed,
for anti-ferromagnets with nearest-neighbor interactions the lattice decomposes into
two disjunct sublattices

Λ=Λe ∪Λo, Λe ∪Λo = ∅. (7.81)

The sites in the even sublattice Λe have an even x1 + · · · + xd and the sites in the
odd sublattice Λo have an odd x1 + · · · + xd . We now suppose that the spins on the
even and odd sublattices are identically distributed:

px = pe if x ∈Λe and px = po if x ∈Λo, (7.82)
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where the probabilities pe and po on the sites of the even and odd sublattices satisfy
the constraints ∫

dνe,o(s)s =
∫

dμ(s)pe,o(s)s =me,o. (7.83)

As in (7.12) we introduce the mean coupling strengths

Jee = 2

Ve

∑

x �=y∈Λe

Jx−y, Jeo = 2

Vo

∑

x∈Λe,y∈Λo

Jx−y (7.84)

and similarly Joo and Joe. For a translationally invariant energy Jee = Joo and Jeo =
Joe and the inner energy density in the MFA takes the form

1

V
〈H 〉 = −Jee

4

(
m2

e +m2
o

)− Jeo

2
memo + 1

2

∫
dνe Q(s)+ 1

2

∫
dνo Q(s). (7.85)

Henceforth one proceeds similarly as for ferromagnetic systems and determines the
site probability densities which minimize the free energy subject to the constraints
(7.83). With the help of two multipliers je and jo one finds

pe,o(s)= 1

z(je,o)
exp

(−βQ(s)+ je,os
)
, (7.86)

where the multipliers are fixed by the constraints. Inserting pe and po into the ex-
pression for the free energy density yields

fmf(me,mo)=−Jee

4

(
m2

e +m2
o

)− Jeo

2
memo + T

2
(Lw)(me)+ T

2
(Lw)(mo).

(7.87)

The last two terms contain the Legendre transform of the Schwinger function w(j)

on one lattice site as defined in (7.15).
For systems with only nearest-neighbor interactions Jee = 0. If in addition the

nearest-neighbor couplings Jxy = J are constant, then Jeo = 2dJ . In particular, we
find the following free energy density of the Ising model:

fmf =−dJmemo +
∑

α=o,e

(
1+mα

4β
log(1+mα)+ 1−mα

4β
log(1−mα)

)
. (7.88)

For a ferromagnetic coupling J > 0 the free energy is minimal for me = mo and
we recover our previous result (7.19). To find the equilibrium magnetizations for
anti-ferromagnetic couplings J < 0 we must solve the coupled gap equations

me = tanh(2dJβmo) and mo = tanh(2dJβme). (7.89)

Besides the symmetric high-temperature phase with vanishing magnetizations on
the two sublattices there exists an anti-ferromagnetic low-temperature phase at tem-
peratures below Tc = 2d|J |. In this phase the two magnetizations point in opposite
directions, i.e. me =−mo. The magnetization on the even sublattice is given by the
same transcendental equation,

me = tanh
(
2d|J |βme

)
, (7.90)

as we encountered for ferromagnetic systems. For more details on the MFA for anti-
ferromagnetic systems you may consult the textbook [17].
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7.8 Mean-Field Approximation for Lattice Field Theories

In a lattice field theory the free energy for spin models with prescribed magnetiza-
tion is replaced by the effective action, see (6.53). Hence we may use the results in
Sect. 7.1 to obtain mean-field approximations for lattice scalar field theories. As for
the spin models we only admit product measures

dP(φ)=
∏

x

dνx(φx), dνx(φ)= px(φ)dμ(φ), (7.91)

in the variational principle for the effective action Γ [ϕ] in (6.54). The site probabil-
ity densities px fulfill the constraints

∫
dμ(φ)px(φ)φ = ϕx (7.92)

and should minimize the effective action (6.54). The lattice action of a scalar field
has the form

S[φ] = −1

2

∑

x,y

φxΔxyφy +
∑

x

V (φx), (7.93)

where Δ denotes the lattice-Laplacian. Since we assume invariance under lattice-
translations, we have Δxy =Δx−y . We now decompose the derivative terms into a
part fixed by the constraints 〈φx〉 = ϕx and a remainder,

∑

x,y

φxΔxyφy →
∑

x �=y
ϕxΔxyϕy +Δ0

∑

x

φ2
x, (7.94)

where Δ0 ≡ Δxx . Except for the missing contribution Δ0
∑

x ϕ
2
x the first sum on

the right-hand side is just the kinetic term of the mean field. Thus we add this con-
tribution to the first sum and consequently subtract it from the second sum. Then we
obtain for the action averaged with product measures

∫
dP(φ)S[φ] = −1

2

∑

x,y

ϕxΔxyϕy +
∑

x

∫
dνx(φ)V (ϕx,φ), (7.95)

wherein the shifted potential

V (ϕ,φ)= Δ0

2
ϕ2 − Δ0

2
φ2 + V (φ) (7.96)

with V (φ,φ) = V (φ) occurs. To solve the variational problem we proceed as we
did for the spin models and end up with the following MFA for the effective action:

Γmf[ϕ] = 1

2

∑

x

(∇ϕx)2 +
∑

x

umf(ϕx). (7.97)

Up to an additive term ∝ ϕ2 the effective potential umf(ϕ) is the Legendre transform
of the convex w(j) = log z(j), where z is the Laplace transform of −Δ0φ

2/2 +
V (φ):

umf(ϕ)= Δ0

2
ϕ2 + (Lw)(ϕ) with ew(j) =

∫
dμ(φ)ejφ+

1
2Δ0φ

2−V (φ). (7.98)



140 7 Mean Field Approximation

For a translationally invariant theory with ferromagnetic couplings we may choose
a homogeneous average field ϕx = ϕ. The extensive effective action is then propor-
tional to the lattice volume βV and defines the intensive effective potential umf:

Γmf[ϕ] = βV umf(ϕ), ϕx = ϕ. (7.99)

One can show that umf represents the MFA of the constraint effective potential

e−βV uc(ϕ) =
∫

dμ(φ)δ

(
1

βV

∑

x

φx − ϕ

)
e−S[φ] (7.100)

introduced in [18], see [19]. This result makes it clear that we must interpret

dPmf(ϕ)= 1

Zmf
e−βV uMF(ϕ) dμ(ϕ) (7.101)

as probability distribution for finding the mean constant field ϕ in the MFA. Since
umf bounds the convex effective potential u from above, see (7.2), its convex hull

(
L 2umf

)
(ϕ)≥ u(ϕ) (7.102)

is a better approximation for u(ϕ). This improved approximation is the Maxwell
construction. For a free theory with classical potential V (φ)=m2φ2/2 the effective
potential (7.98) is (up to an additive constant) given by

w(j)= 1

2

j2

m2∗
�⇒ (Lw)(ϕ)= 1

2
m2∗ϕ2, m2∗ =m2 −Δ0, (7.103)

such that the effective potential is simply the classical potential, umf(ϕ)= V (ϕ).

7.8.1 φ4 and φ6 Scalar Theories

An interacting φ4-theory with classical potential

V (φ)= m2

2
φ2 + λ

4
φ4, (7.104)

gives rise to the site Schwinger function

w(j)= log
∫

dφ exp

(
jφ − m2∗

2
φ2 − λ

4
φ4

)
(7.105)

with effective mass m∗ defined in (7.103). In order to localize the phase transition
in the parameter-space (m,λ) we need the second derivative of w at the origin

w′′(0)= 4z

m2∗
K3/4(z)−K1/4(z)

K1/4(z)
, z := m4∗

8λ
, (7.106)

where the modified Bessel functions of the second kind occur. For any Z2-
symmetric potential the strictly convex and symmetric function w has its (unique)
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Fig. 7.8 The dependence of
the monotonically decreasing
function F(z) in (7.109) as a
function of the variable
z=m4∗/8λ

minimum at the origin such that ϕ(j = 0)= 0. According to (5.58) the curvature of
Lw at the origin is then equal to

(Lw)′′(0)= 1

w′′(0)
. (7.107)

Thus the curvature of umf at the origin changes sign if

−Δ0 = m2∗
4z

K1/4(z)

K3/4(z)−K1/4(z)
. (7.108)

This gap equation determines a critical curve in the (m2, λ)-plane, where the sym-
metric phase with ϕ = 0 becomes unstable. For the simplest lattice-Laplacian based
on the forward or backward derivative we have Δ0 =−2d . Hence the equation for
the critical curve reads

4

1+m2/2d
= 1

z

K1/4(z)

K3/4(z)−K1/4(z)
≡ F(z). (7.109)

The monotonically decreasing function F(z) approaches the value of 4 from above
for large arguments and is plotted in Fig. 7.8. It follows that Eq. (7.109) can only
be solved for negative m2. Conversely, since F(z) reaches infinity for z→ 0 there
always exists a solution λc(m

2) for −2d <m2 < 0.
Next we examine the weak-coupling regime for which z in (7.106) is large. For

z � 1 we insert the asymptotic expansions of the Bessel functions Kν for large
arguments [20] into the gap equation (7.109) and find

−m2

2d
= 3

8z
− 3

8z2
+ · · · = 3λ

m4∗

(
1− 8λ

m4∗
+ · · ·

)
. (7.110)

Neglecting terms of the order O(λ3) in this relation we obtain the two solutions

λc(m)=
(

2d +m2

4

)2(
1±

√

1+ 16m2

3d

)
. (7.111)

Since the “critical mass” vanishes for λ= 0 we only keep the solution with negative
sign. We have seen that m2 must be negative for positive λc.
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Fig. 7.9 The mean-field effective potential of the interacting φ4-theory with classical double-well
potential λ(φ2 − 1)2 in one and three dimensions. umf is the effective potential in the MFA (black)
and V the classical potential (gray)

The classical double-well potential V (φ) = λ(φ2 − 1)2 together with its mean-
field effective potential umf in one and three dimensions are depicted in Fig. 7.9.
Observe that with increasing dimension the minima of umf approach the minima of
the classical potential. An octave program which computes umf is contained in
the appendix to this chapter.

The Z2-symmetric classical potential of the sixth order,

V (φ)= φ6 − 3φ4 +μφ2, (7.112)

and its effective potential in d = 3 dimensions are plotted in Fig. 7.10 for four values
of the mass parameter μ. In the MFA the system shows a weak first-order transi-
tion at μ = 2. For μ < 2 the Z2-symmetry is spontaneously broken since ϕ �= 0.
However, for μ≥ 2 the order parameter vanishes and the Z2-symmetry is restored.

7.8.2 O(N) Models

The Euclidean action of the nonlinear O(N) sigma model in d dimensions is

S =− 1

2g2

∫
ddx(φ,Δφ) with φ(x) ∈R

N, φ(x) · φ(x)= 1. (7.113)

On the lattice we approximate the continuum action by

H =− 1

2g2

∑

x,y

φxΔxyφy with φx ∈R
N, φ2

x = 1, (7.114)

where Δxy =Δx−y is some translationally invariant lattice Laplacian. Product mea-
sures on the configuration space have the form (7.91) with single spin distribution

dμ(φ)= δ
(
φ2 − 1

)
dNφ (7.115)

and enforce the constraints φ2
x = 1 on all lattice sites. The prescribed average field

ϕx =
∫

dνx(φ)φ (7.116)
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Fig. 7.10 The mean-field effective potential umf and classical potential V of the φ6-theory with
potential (7.112) in d = 3 dimensions for different values of the mass parameter μ

takes its values inside or on the boundary of the unit-ball in R
N . For product mea-

sures the averaged action reads

〈S〉 = − 1

2g2

∑

x,y

ϕxΔxyϕy − Δ0

2g2

∑

x

(
1− ϕ2

x

)
, (7.117)

where Δ0 =Δxx appeared previously. The constraints (7.116) are implemented by
multiplier fields and the solution of the associated variational problem for the site
probability densities leads to the mean-field effective action

Γmf[ϕ] = − 1

2g2

∑

x,y

ϕxΔxyϕy +
∑

x

umf(ϕx). (7.118)

The by now familiar effective potential

umf(ϕ)= Δ0

2g2

(
ϕ2 − 1

)+ (Lw)(ϕ) (7.119)

contains the Legendre transform of w = log z with one-site partition function

z(j)=
∫

dNφδ
(
φ2 − 1

)
e(j,φ), j ∈R

N. (7.120)
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Fig. 7.11 Mean-field effective potentials for the O(3) and O(6) models

To calculate the integral we align the z-axis in φ-space with the direction defined by
the source j and use polar coordinates in φ-space. Then the integral simplifies to

z(j)= Vol
(
SN−2)

∫
dθe|j | cos θ (sin θ)N−2. (7.121)

With the integral representation for the modified Bessel function

Iν(z)= (z/2)ν√
π�(ν + 1/2)

∫ π

0
dθ ez cos θ (sin θ)2ν, (7.122)

the one-site partition function takes the form

z(j)= (2π)N/2 IN/2−1(|j |)
|j |N/2−1

O(3)→ z(j)= 4π
sinh(|j |)

|j | . (7.123)

The site partition functions only depend on the modulus of j , in accordance with
the underlying O(N) symmetry. It immediately follows that umf in (7.119) only
depends on the modulus of the mean field. To calculate its curvature at the origin,

u′′mf(0)=
Δ0

g2
+ (Lw)′′(0),

we use the small-j expansion w(j)= const.+j2/2N+· · · and conclude (Lw)′′(0)
=N1, such that u′′mf(0) changes sign for the critical coupling

g2 = g2
c =−Δ0

N
. (7.124)

The lattice Laplacian has diagonal elements Δ0 = −2d such that g2
c = 2d/N . For

weak couplings g < gc the MFA predicts a broken phase. Some typical effective
potentials for the O(3) and O(6) models and g ≈ gc are depicted in Fig. 7.11. The
MFA predicts a second-order transition from an O(N)-symmetric strong coupling
phase to a spontaneously broken weak-coupling phase. Note that in two dimensions
this prediction is in conflict with the Mermin–Wagner theorem [21, 22], according to
which a continuous symmetry cannot be spontaneously broken in two dimensions.
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7.9 Program for Chap. 7

This section contains the octave program

• mfscalar.m

which was used in this chapter. This program computes the effective potential umf in
the mean-field approximation with the classical potential V (φ) = λ(φ2 − 1)2. The
plots on pp. 142 and 143 have been calculated with this program. The dimension of
spacetime may be altered by changing d in the source code.

1 function mfscalar;
2 # calculation of effective potential for scalar field theory
3 # with potential V(phi)=lambda*(phi**2-1)**2 in the mean-field
4 # approximation. Dimension and coupling lambda as input.
5 # Result is stored in file mfscalar.dat.
6 d=3; # dimension
7 lam=input("lambda ");
8 a=(d-2*lam);
9 closeplot;

10 Nx=501; eps=2/(Nx-1); # Nx must be odd number
11 x=linspace(-10,10,Nx);
12 x2=x.*x; x4=x2.*x2; eps=eps/3;
13 z=eps*exp(-a*x2-lam*x4-lam);
14 j=linspace(-20,20,80)’; N=length(j);
15 # for Simpson integration
16 for i=2:2:Nx-1;
17 z(i)=4*z(i);
18 endfor;
19 for i=3:2:Nx-2;
20 z(i)=2*z(i);
21 endfor;
22 int0=zeros(N,Nx);int1=int2=int0;
23 L=zeros(N,1);s0=s1=umf=umf1=L;
24 for i=1:N
25 int0(i,:)=z.*exp(j(i)*x);
26 s0(i)=sum(int0(i,:));
27 int1(i,:)=x.*int0(i,:);
28 s1(i)=sum(int1(i,:));
29 endfor;
30 # Schwinger function
31 w0=log(s0);
32 L=s1./s0;
33 # calculate, plot and store effective potential
34 umf=-d*L.*L+j.*L-w0;
35 # search for minimum of potential
36 [min1,nmin]=min(umf);
37 nmin=max(nmin,N+1-nmin);
38 umf(nmin)=umf(nmin)+.5; # mark minimum
39 data=[L,umf-min1]; # normalize potential
40 # classical potential
41 L2=L.*L;
42 V=lam*L2.*L2-2*lam*L2+lam;
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43 [vmin1,vnmin]=min(V);
44 datav=[L,V-vmin1];
45 gplot [-1.5:1.5] data,datav;
46 mfscalar=fopen("mfscalar.dat","w","native");
47 for i=1:N
48 fprintf(mfscalar,"(%4.2f,%4.2f)",L(i),umf(i)-min1);
49 if (rem(i,5)==0) fprintf(mfscalar,"\n");
50 endif;
51 endfor;spotts17
52 fclose(mfscalar);
53 endfunction;

7.10 Problems

7.1 (MFA for the Z3 model) Determine the partition function of the Z3-model with
energy function

H =−
∑

x,y∈Λ
Jxy cos(θx − θy) with θx ∈

{
2πn

3

∣
∣∣∣n= 0,1,2

}

in the mean-field approximation. Introduce the order parameter

m= 1

V

∑

x∈Λ
exp(iθx)

and express the Hamiltonian as a function of m and m̄. How many configurations
do exist for a given m? Determine the function f (m, m̄) occurring in

Z =
∑

m

exp
(−βVf (m, m̄))

and discuss the result.

Hint Introduce a0, a1, a2 with an representing the number of lattice points with
θ = 2πn/3. Express m as a function of the an. Are the an uniquely determined for
fixed m and V ? Use the an in order to determine the number of configurations.

7.2 (MFA based on the Bogoliubov inequality) An alternative way of deriving the
mean-field theory for a given microscopic system with energy H is to start with the
Bogoliubov inequality

F ≤Φ ≡ F0 + 〈H −H0〉0, (7.125)

where F = −kT logZ is the free energy of the system of interest, H0 is a trial
energy function, F0 the corresponding free energy and 〈. . .〉0 denotes the average
taken in the ensemble defines by H0.
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• Prove the inequality (7.125). If you have any difficulties you may consult the
book of H.B. Callen [23].

• The mean-field free energy is defined by minimizing Φ with respect to the varia-
tional parameters λ in the trial energy H0(λ),

Fmf = min
λ

Φ(λ).

The usual choice for H0 is a free Hamiltonian as this allows for an explicit calcu-
lation of Φ . Consider the Ising model without magnetic field on a lattice with V

sites and coordination number q . Choose as trial energy

H0 =−λ
∑

x

sx (7.126)

and compute Φ . Minimize the result with respect to the parameter λ. Calculate
the corresponding Fmf. What is the meaning of the variational parameter λ?

7.3 (An analytically solvable model) Consider a scalar field theory with

V (φ)=− log
(
1+ φ2)+ 1

2
m2φ2, m2 > 0.

For m2 < 2 the origin is a local maximum. Plot the potential for various values
of m. Calculate the one-site Schwinger function and discuss the resulting effective
potential for small m2.

7.4 (First-order transition in Landau theory) Consider a Landau expansion of the
free energy density of the form

fL(m)= a

2
m2 + b

4
m4 + c

6
m6, c > 0. (7.127)

Show that there exists a line of critical transitions a = 0, b > 0 which joins a line
of first-order transitions b = −4(ac/3)1/2 at a tricritical point a = b = 0. Sketch
fL(m) in each region of the (a, b) plane, on the transition lines and at the tricritical
point.
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Chapter 8
Transfer Matrices, Correlation Inequalities
and Roots of Partition Functions

In Chaps. 2 and 5 we quantized mechanical systems and classical field theories via
the functional integral formalism. Through a Wick rotation of vacuum expectation
values we arrived at a (formal) Euclidean functional integral. In a next step the un-
derlying Euclidean space-time is replaced by a lattice and this discretization leads to
well-defined lattice field theories—these are particular spin models with continuous
target spaces. To calculate thermal expectation values one imposes (anti)periodic
boundary conditions in the imaginary time direction for the lattice fields. By these
steps one approximates quantum field theories in d space-time dimensions by par-
ticular classical statistical systems in d dimensions.

In the first part of this chapter we follow the opposite way. For particu-
lar spin models we can reconstruct a state space and a Hamiltonian operator,
where the latter converges to the Hamiltonian operator of a relativistic quantum
field theory. Thereby we shall make use of the transfer-matrix method, which
can be applied to general spin models with short-range interactions. To intro-
duce the method we first calculate thermodynamic potentials and correlation func-
tions of simple one-dimensional spin models, so-called “spin chains”. Then we
present the general formalism and apply it to scalar field theories on the lat-
tice.

In the second part we introduce and prove some useful correlation inequalities
for general ferromagnetic systems. These inequalities tell us that certain expectation
values or combinations of expectation values are non-negative. In particular the two
Griffith–Kelly–Sherman (GKS) inequalities can be used to study the dependence of
expectation values on the parameters of a system or to compare correlation functions
of spin systems in different volumes or in different dimensions.

In the last part we investigate the Lee–Yang zeros of partition functions, consid-
ered as functions of the complex magnetic field (or a complex chemical potential
for lattice gases). For the target space T = R and an even single-spin density the
partition function of a class of ferromagnetic systems can only vanish for imaginary
‘magnetic fields’. This theorem of Lee and Yang holds for a system with ferromag-
netic couplings provided it holds for zero interaction.

A. Wipf, Statistical Approach to Quantum Field Theory, Lecture Notes in Physics 864,
DOI 10.1007/978-3-642-33105-3_8, © Springer-Verlag Berlin Heidelberg 2013
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8.1 Transfer-Matrix Method for the Ising Chain

The transfer-matrix method is a powerful technique for solving problems in statis-
tical physics. It has been used to find exact solutions, and in particular the famous
solution of the two-dimensional Ising model by Lars Onsager [1]. This section con-
tains an introduction to transfer-matrix methods. For more information and applica-
tions to spin systems you may consult the textbooks [2, 3]. We explain the method
on the basis of the exactly solvable Ising chain on a one-dimensional lattice Λ with
N sites [4]. We choose periodic boundary conditions for which sx and sx+N are
identified and the energy function (6.2) takes the form

HΛ(ω)=−J
N∑

x=1

sxsx+1 − h

N∑

x=1

sx, sx ∈ {−1,1}. (8.1)

Now we will calculate the free energy, inner energy, magnetization and two-point
correlation function with the help of the transfer-matrix method.

8.1.1 Transfer Matrix

In a first step we rewrite the partition function of the chain as follows:

ZΛ(β)=
∑

ω

e−βHΛ(ω) =
∑

s1,...,sN

eKs1s2+βh(s1+s2)/2 × eKs2s3+βh(s2+s3)/2 × · · ·

=
∑

s1,...,sN

Ts1s2Ts2s3 · · ·TsNs1 = tr T̂ N , K = βJ. (8.2)

Here we defined the two-dimensional transfer matrix with matrix elements

〈s|T̂ ∣∣s′
〉= eKss′+βh(s+s′)/2, (8.3)

where s and s′ take the values ±1. It is real, symmetric and has positive entries,

T̂ =
(

eK+βh e−K
e−K eK−βh

)
. (8.4)

To calculate the trace in (8.2) we diagonalize the transfer matrix with the help of a
rotation matrix R,

T̂ =RDR−1, R =
(

cosγ − sinγ
sinγ cosγ

)
, D =

(
λ+ 0
0 λ−

)
, (8.5)

where the diagonal matrix D contains the two positive eigenvalues

λ± = eK(coshβh±B) with B = (
sinh2 βh+ e−4K)1/2

, (8.6)

and λ+ > λ−. The angle γ in the rotation matrix is determined through

sin 2γ = 1

B
e−2K, cos 2γ = 1

B
sinhβh. (8.7)



8.1 Transfer-Matrix Method for the Ising Chain 151

In terms of the eigenvalues the trace in (8.2) is written as

ZΛ(β,h)= tr T̂ N = λN+ + λN− = λN+
(
1+ pN

)
, p = λ−

λ+
. (8.8)

For all values of the magnetic field the last ratio of eigenvalues is bounded, p < 1.

Thermodynamic Potentials The result (8.8) means that the thermodynamic po-
tentials are determined by the eigenvalues of the transfer matrix. For example, the
free energy density is

fΛ(β,h)= 1

N
FΛ(β,h)=− 1

β
logλ+ − 1

βN
log

(
1+ pN

)
. (8.9)

In the thermodynamic limit N → ∞ the term pN vanishes and the free energy
density is solely determined by the largest eigenvalue of T̂ ,

f (β,h)= lim
N→∞fΛ(β,h)=− 1

β
logλ+. (8.10)

Similarly, the inner energy density

uΛ(β,h)=− ∂

∂β

(
logλ+ + 1

N
log

(
1+ pN

))
(8.11)

in the thermodynamic limit is determined by the largest eigenvalue according to

u(β,h)= lim
N→∞uΛ(β,h)=− ∂

∂β
logλ+. (8.12)

Without external field we simply have u(β,0)=− tanK .

Correlation Functions The magnetization of the chain is calculated via the trans-
fer matrix as follows

m≡ 〈s1〉 = 1

Z

∑

ω

e−βH(ω)s1 = 1

Z

∑

ω

s1Ts1s2 · · ·TsN s1 =
1

Z
tr
(
ŝ T̂ N

)
, (8.13)

where ŝ = σ3 denotes the third Pauli matrix. Using T̂ = RDR−1 and that the trace
is invariant under cyclic permutations of its arguments we obtain

m= 1

Z
tr
(
R−1ŝ RDN

)
, where R−1ŝ R =

(
cos 2γ − sin 2γ
− sin 2γ − cos 2γ

)
. (8.14)

Inserting the diagonal matrix D defined in (8.5) leads to

m= 1− pN

1+ pN
cos 2γ

N→∞→ cosh(2γ )= sinhβh

(sinh2 βh+ e−4K)1/2
. (8.15)

Of course, differentiating the free energy density (8.9) with respect to the external
field yields the same magnetization.

For any positive temperature the magnetization (8.15) vanishes when the field h

is switched off—only at zero temperature a permanent magnetization remains. The
Ising chain shares this property with many other one-dimensional lattice models,
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since all spin chains with short-range interactions (and further mild assumptions)
show no phase transition at any positive temperature [5, 6]. This van Hove theo-
rem does not exclude the possibility of phase transitions in one dimension, see for
example [7]. For a further reading I refer to the collection of reprints in [8].

For the two-point function we proceed similarly as for the one-point function and
obtain for y ≥ x

〈sxsy〉 = 1

Z

∑

ω

e−βH(ω)sxsy

= 1

Z

∑

s1,sx ,sy

(
T x−1)

s1sx
sx
(
T y−x)

sxsy
sy
(
T N+1−y)

sys1

= 1

Z
tr
(
ŝ T̂ y−x ŝ T̂ N−(y−x))

= 1

Z
tr
((
R−1ŝ R

)
Dy−x (R−1ŝ R

)
DN−(y−x)),

with matrices D and R−1SR given in (8.5) and (8.14). A short calculation leads to

〈sxsy〉 = cos2 2γ + py−x + pN−(y−x)

1+ pN
sin2 2γ, y ≥ x. (8.16)

Translational invariance and the symmetry relation 〈sxsy〉 = 〈sysx〉 imply that the
two-point function only depends on the distance |y− x| of the spins. In the thermo-
dynamic limit we find

lim
N→∞〈sxsy〉 = cos2 2γ + e−|y−x|/ξ sin2 2γ, (8.17)

where we introduced the correlation length

ξ−1 = log
1

p

h→0→ − log tanhK, K = βJ, (8.18)

which is finite for all T > 0. The correlation function satisfies the cluster property

〈sxsy〉 − 〈sx〉〈sy〉︸ ︷︷ ︸
=m2

N→∞→ sin2 2γ e−|y−x|/ξ |y−x|→∞→ 0. (8.19)

At first glance it seems surprising that the Ising chain shows no ordered phase at low
temperature since the ordered states with all spins pointing in the same direction
have lowest energy. However, they do not minimize the free energy F = U − T S.
To see this let us consider particular configurations like ↑↑↑↑↑↓↓↓↓↓, where the
spins are partially inverted. Due to the interface between the two sub-chains with
aligned spins the inner energy increases by �U = 4J . But the N configurations
with one interface contribute k logN to the entropy. We conclude that for large N

the free energy is lowered by the interface.
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8.1.2 The “Hamiltonian”

We now extract the two-dimensional hermitian matrix Ĥ via the relation

T̂ = e−Ĥ (8.20)

from the positive transfer matrix T̂ such that

ZΛ(β)= tr T̂ N = tr e−NĤ . (8.21)

The operator Ĥ should not be mistaken with the classical energy H of spin config-
urations. The result (8.21) suggests that Ĥ represents the discretized Hamiltonian
of a quantum theory associated to the spin system. To actually calculate Ĥ for the
Ising chain we use the formula

exp

(
α
∑

i

niσi

)
= coshα + sinhα

3∑

i=1

niσi, (8.22)

where {σ1, σ2, σ3} are the Pauli matrices and n is a unit vector. To simplify matters
we assume h= 0 such that the transfer matrix (8.4) takes the simple form

T̂ = eK1+ e−Kσ1 = eK

coshK∗ eK
∗σ1, K = βJ. (8.23)

Here we introduced the so-called dual coupling K∗ in virtue of the relation

tanhK∗ = e−2K or tanhK = e−2K∗
. (8.24)

From the last representation in (8.23) it is easy to extract the Hamiltonian

Ĥ =− log T̂ =−K + log coshK∗ −K∗σ1 =E0 +K∗(1− σ1) (8.25)

with ground state energy E0 = log coshK∗ −K − K∗. Using the duality relation
between K and K∗ we can write this energy as

E0 =− log(2 coshK)= lim
N→∞βf (β,0). (8.26)

The only excited energy level lies 2K∗ above the ground state and yields the inverse
correlation length 2K∗, in agreement with (8.18).

Two Dimensions While it is a relatively simple problem to find the transfer ma-
trix of the Ising chain, the corresponding problem for the two-dimensional model
is highly nontrivial. The solution without external field is due to Onsager, who was
able to find the analytical expression (6.3) for the free energy in the thermodynamic
limit via the transfer-matrix approach. This then gives an exact set of critical ex-
ponents, see the discussion on p. 103 in Chap. 6. For a derivation I refer to the
textbook [9]. To date, the three-dimensional Ising model remains unsolved.
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8.1.3 The Anti-Ferromagnetic Chain

For the anti-ferromagnetic Ising chain with negative K = βJ the eigenvalue λ+ of
the transfer matrix in (8.6) remains positive whereas the eigenvalue λ− becomes
negative. Actually, without external field the larger eigenvalue does not change un-
der J →−J whereas the smaller eigenvalue changes its sign,

λ+ = 2 cosh(K) > 0 and λ− = 2 sinh(K) < 0. (8.27)

Thus for h= 0 the anti-ferromagnetic and ferromagnetic chains share the same free
energy density in the thermodynamic limit. However, since p < 0 the correlation
function (8.16) becomes an oscillating function with different signs at adjacent lat-
tice sites,

lim
N→∞〈sxsy〉c = (tanhK) |y−x| = (−1)|y−x|

(
tanh |K|)|y−x|. (8.28)

Here we have taken into account that in the absence of the external field sin 2γ = 1.
The oscillatory behavior originates from the non-positivity of the transfer matrix.
Since the exponential of a hermitian matrix is a positive matrix we cannot define a
hermitian Hamiltonian for the anti-ferromagnetic chain as we did in (8.20). How-
ever, we may define a Hamiltonian by using the positive matrix T̂ 2 according to

T̂ 2 = e−2Ĥ . (8.29)

The hermitian operator Ĥ agrees with the Hamiltonian of the ferromagnetic Ising
chain and determines the long-range behavior of the anti-ferromagnetic system.

8.2 Potts Chain

A configuration ω= {σ1, . . . , σN } of the periodic q-state Potts chain has the energy

HΛ(ω)=−J
N∑

x=1

δ(σx, σx+1)− 2h
N∑

x=1

δ(σx,1), σx ∈ {1,2, . . . , q}. (8.30)

For later convenience we rescaled the external field as compared to (6.10). The
partition function can be written as

ZΛ(β,J,h)=
∑

σ1,...,σN

eKδ(σ1,σ2)+2βhδ(σ1,1) × eKδ(σ2,σ3)+2βhδ(σ2,1) × · · ·

=
∑

σ1,...,σN

Tσ1σ2Tσ2σ3 · · ·TσNσ1 = tr T̂ N , K = βJ, (8.31)

where we introduced the q-dimensional non-symmetric transfer matrix

(Tσσ ′)=
〈
σ |T̂ |σ ′〉=

⎛

⎜
⎜
⎝

ζz z . . . z

1 ζ . . . 1
...

...
. . .

...

1 1 . . . ζ

⎞

⎟
⎟
⎠ , ζ = eK, z= e2βh. (8.32)
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Following [10] we calculate the characteristic polynomial det(T̂ − λ1) explicitly.
Its roots λ1, . . . , λq are just the eigenvalues of the transfer matrix and determine the
thermodynamic potentials.

Let us subtract the second row of T̂ − λ1 from the third and each of the subse-
quent rows, followed by adding the third and all subsequent columns to the second
column. The determinant of the resulting matrix

⎛

⎜⎜⎜⎜
⎝

ζz− λ z(q − 1) z . . . z

1 ζ + q ′ − λ 1 . . . 1
0 0 ζ − 1− λ . . . 0
...

. . .

0 0 . . . ζ − 1− λ

⎞

⎟⎟⎟⎟
⎠

is equal to the characteristic polynomial of the transfer matrix. It factorizes into a
polynomial of degree q ′ = q − 2 and a quadratic polynomial,

det(T̂ − λ1)= (ζ − 1− λ)q
′(
λ2 − (

ζz+ ζ + q ′
)
λ+ z(ζ − 1)(ζ + q − 1)

)
.

The first factor has the root ζ − 1 of order q ′ and the second factor the simple roots

λ± = 1

2

(
(z+ 1)ζ + q ′ ±

√(
ζz− ζ − q ′

)2 + 4(q − 1)z
)

= eK+βh coshβh+ q ′

2
±

√(
eK+βh sinhβh− 1

2
q ′
)2

+ e2βh(q − 1).

(8.33)

Hence, we obtain the following explicit expression for the partition function:

ZΛ(ζ, z)= tr T̂ N = λN+ + λN− + q ′(ζ − 1)N , (8.34)

which for q = 2 is proportional to that of the Ising chain. In the thermodynamic
limit only the contribution of the largest eigenvalue λ+ remains and determines the
free energy and inner energy density according to (8.10) and (8.12), respectively.

8.3 Perron–Frobenius Theorem

We have seen that the largest eigenvalue λ+ of the transfer matrix determines the
thermodynamic potentials of the corresponding spin model in the thermodynamic
limit. A theorem of OSKAR PERRON [11] and GEORG FROBENIUS [12] asserts that
a real square matrix with positive entries has a unique largest real eigenvalue and
that there is a corresponding eigenvector with strictly positive components:

Theorem 8.1 (Perron–Frobenius) Let T̂ be a hermitian matrix with positive matrix
elements Tij . Then the eigenvector with largest eigenvalue ‖T̂ ‖ is unique and its
components are all unequal to zero and may be chosen as positive numbers.
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Proof We choose the norm given by ‖ψ‖2 =∑
ψ∗
i ψi for a vector in C

n. The oper-

ator norm of a n-dimensional matrix T̂ is defined as

‖T̂ ‖ = sup
ψ �=0

‖T̂ ψ‖
‖ψ‖ . (8.35)

Now let Ω̃ = (Ω̃1, . . . , Ω̃n)
T be the eigenvector of T̂ with the largest eigenvalue,

i.e.

(Ω̃, T̂ Ω̃)= ‖T̂ ‖(Ω̃, Ω̃).

Clearly, the vector Ω := (|Ω̃1|, . . . , |Ω̃n|)T has the same norm as Ω̃ . Since the ma-
trix elements of T̂ are non-negative we conclude that

(Ω, T̂ Ω)≥ (Ω̃, T̂ Ω̃)= ‖T̂ ‖(Ω̃, Ω̃)= ‖T̂ ‖(Ω,Ω) (8.36)

holds. Using the Cauchy–Schwarz inequality we have

(Ω, T̂ Ω)≤ ‖Ω‖‖T̂ Ω‖ ≤ ‖T̂ ‖‖Ω‖2. (8.37)

The two inequalities (8.36) and (8.37) imply

(Ω, T̂ Ω)= ‖T̂ ‖ (Ω,Ω)

such that also Ω is eigenvector with the same maximal eigenvalue ‖T̂ ‖ as Ω̃ . None
of the components of this real eigenvector is zero as

0 <
∑

j

TijΩj = (T̂ Ω)i = ‖T̂ ‖Ωi �⇒ Ωi > 0

shows. Now we can prove that the eigenvectors Ω̃ and Ω are linearly dependent.
For that purpose we insert

Ω̃j = eiϕjΩj

into (Ω̃, T̂ Ω̃)= (Ω, T̂ Ω) and find
∑

Ω̃∗
j TjkΩ̃k =

∑
ΩjTjkΩkei(ϕk−ϕj ) =

∑
ΩjTjkΩk.

Since ΩjTjkΩk is positive we conclude ϕk = ϕj ≡ ϕ, which means that the two
eigenvectors Ω and Ω̃ are linearly dependent, Ω̃ = eiϕ Ω . Now it is not difficult to
prove the Perron–Frobenius theorem: Let Ω(1) and Ω(2) be two linearly indepen-
dent eigenvectors corresponding to the largest eigenvalue. According to the previous
discussion we may assume that all components of these vectors are positive num-
bers. Then there exists an α > 0, such that the eigenvector corresponding to the same
largest eigenvalue

Ω(1) − αΩ(2)

has positive and negative components. But this is impossible as verified above. �
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8.4 The General Transfer-Matrix Method

A transfer matrix can be defined for spin systems on lattices of the form Λ =
Z × R. The coordinate τ ∈ Z is sometimes called time coordinate in contrast to
the coordinates x on the spatial lattice R. A lattice site is characterized by its time
coordinate and its spatial coordinates, x = (τ,x). We may view a spin configuration
on Λ as the set of spin configurations on R, labeled by τ ,

ω= {sx |x ∈Λ} = {ωτ |τ ∈ Z}, with ωτ = {sτ,x|x ∈R}. (8.38)

For simplicity we will assume that Λ is a d-dimensional hypercubic lattice in which
case R is a d− 1-dimensional hypercubic lattice. As earlier on we denote the target
space, sometimes called space of local states, by T .

To construct the “Hilbert space” of states on the spatial lattice we first introduce
the one-site vector space Hx of complex-valued functions ψ on the target space,

Hx = {ψ |ψ :T →C}. (8.39)

The local states characterize a basis of Hx consisting of characteristic functions,

|s〉 =ψs with ψs

(
s′
)= δs,s′ . (8.40)

We now define the scalar product according to
〈
s|s′〉= δs,s′ . (8.41)

If T is infinite discrete, we demand ψ to be square summable, ψ ∈ �2, if T is
continuous, then we demand ψ to be square integrable ψ ∈ L2(T ), similar as in
quantum mechanics. The one-site vector space Hx is C

2 for the Ising model and
L2(R) for a real scalar field. We now define a state space

H =
⊗

x∈R

Hx, (8.42)

associated with the spatial lattice. This is the space of all (complex-valued) functions
over the configurations on R. A basis of H is given by the product states

|ω〉 =
⊗

x∈R

|sx〉. (8.43)

They are characteristic functions on configurations ω = {sx|x ∈ R} at fixed time.
We refer to this basis as the configuration-space basis. The scalar product of two
basis elements is defined as product of the scalar products of their factors in Hx.

Along with the decomposition of the space-time lattice Λ = Z× R goes a de-
composition of the energy function. Assuming that the interaction is restricted to
nearest-neighbors we obtain

H(ω)=
∑

τ

H0(ωτ+1,ωτ )+
∑

τ

U(ωτ ). (8.44)
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The first term containing the interactions between spins on adjacent time-slices does
not change under an interchange of the configurations, i.e. H0(ω

′,ω)=H0(ω,ω
′).

We may write H0 and U as

H0 =
∑

x

h0(sτ+1,x, sτ,x) and U =
∑

〈x,y〉
u(sτ,x, sτ,y). (8.45)

We now introduce the transfer matrix as a linear operator on H through its matrix
elements in the configuration-space basis:

Tωω′ =
〈
ω|T̂ |ω′〉= exp

(
−H0

(
ω,ω′)− 1

2
U(ω)− 1

2
U
(
ω′)

)
. (8.46)

This real and symmetric matrix with positive entries has real eigenvalues and
the Perron–Frobenius theorem ensures that the largest eigenvalue λmax is posi-
tive and non-degenerate. If some eigenvalues of T̂ are negative, such as for anti-
ferromagnets, we choose the positive matrix T̂ 2 to extract a lattice-Hamiltonian Ĥ ,

T̂ 2 = e−2Ĥ , Ĥ self-adjoint. (8.47)

The partition function on a periodic lattice with N time-slices is given by

ZΛ = tr T̂ N =
∑

n

λNn
N→∞→ λNmax. (8.48)

To discuss the continuum limit we define a set of operators in the configuration-
space basis: the diagonal operators ŝx through

ŝx|ω〉 = sx|ω〉 (8.49)

and the operators π̂x which map basis vectors into different basis vectors,

π̂x|ω〉 = |ωδ〉, (8.50)

where ωδ arises from ω through a shift of sx. The second operator corresponds to
the quantum mechanical momentum operator and changes local states at x by a
constant. The exact form of the π̂x depends on the theory of interest. If sx is real,
then π̂x corresponds to the addition of a constant, whereas if sx is group valued, then
(for a cyclic group) it is the multiplication with a generating group element. Every
operator on H may be expressed in terms of the operators ŝx and π̂x. For the simple
Ising chain the spatial lattice R is simply a point. If we choose the basis

|1〉 =
(

1
0

)
and |−1〉 =

(
0
1

)
, (8.51)

then the matrices ŝ and π̂ are given by

ŝ = σ3 and π̂ = σ1. (8.52)

8.5 Continuous Target Spaces

Now we consider lattice models with continuous target spaces T where the transfer
‘matrix’ is actually an operator. In a suitable basis the transfer matrix becomes a
positive integral operator acting on real-valued functions on T .
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8.5.1 Euclidean Quantum Mechanics

For a particle on the line we approximate the line by a one-dimensional lattice with
N lattice points and lattice spacing ε. In terms of rescaled dimensionless variables
the Euclidean lattice action reads

S =
N∑

j=1

{
m

2
(qj+1 − qj )

2 + V (qj )

}
. (8.53)

As transfer ‘matrix’ we choose the integral operator with symmetric kernel

〈q|T̂ ∣∣q ′
〉= Tqq ′ =

√
m

2π
e−

1
2mq

2− 1
2V (q) emqq

′
e−

1
2mq

′2− 1
2V (q

′), (8.54)

such that the partition function at inverse temperature β = εn is given by

ZN = tr T̂ N =
∫

dq1 · · ·dqN Tq1q2Tq2q3 × · · · × TqNq1 . (8.55)

For the harmonic oscillator with potential V (q)=mω2q2/2 the kernel is Gaussian
and hence T̂ has a Gaussian eigenfunction,

∫
dq ′ Tqq ′ ψ0

(
q ′
)= λ0ψ0(q), with ψ0(q)∝ e−mαq2/2. (8.56)

The parameter α and the eigenvalue λ0 are

α = ω

√
1+ω2/4 and λ0 =

√
1− α +ω2/2 < 1. (8.57)

Actually one can find all eigenfunctions and eigenvalues of the transfer matrix in
closed form. The solution to problem 8.3 tells us that

T̂ |ψn〉 = λn|ψn〉 with λn = λ2n+1
0 < λ0, n ∈N0, (8.58)

where the ψn(q) are calculated from the ground state wave function according to,

ψn(q)∝ â†nψ0(q), a† = ∂

∂q
−mαq. (8.59)

This means that the eigenvalues of the lattice Hamiltonian Ĥ are equidistant,

spectrum(Ĥ )= {−(2n+ 1) logλ0|n ∈N0
}
, (8.60)

similarly as for the harmonic oscillator on R.

Continuum Limit The dimensionless lattice quantities in the previous formulas
(now denoted by an index L, similarly as on p. 59) are related to the dimensionful
physical quantities as follows:

ωL = εω, mL = εm, ĤL = εĤ , qL = ε−1q. (8.61)

For a small lattice spacing ε the eigenvalues of the dimensionful Hamiltonian Ĥ

have the expansions

−1

ε
logλn =

(
1

2
+ n

)
ω+O

(
ε2)



160 8 Transfer Matrices, Correlation Inequalities and Roots of Partition Functions

and in the continuum limit ε→ 0 we recover the energies of the harmonic oscillator
on the line together with its ground state wave function exp(−mωq2/2). In terms of
physical parameters the transfer kernel takes the form

Tqq ′ =
√

m

2πε
exp

{
−m

2ε

(
q − q ′

)2 − 1

2
Vε(q)− 1

2
Vε

(
q ′
)}
,

where Vε is the potential one obtains by substituting q/ε for qL and the dimensionful
couplings for the dimensionless lattice couplings in the lattice potential. Finally,
from the proof of the Feynman–Kac formula in Sect. 2.3 it follows that

lim
ε→0

Tqq ′ = lim
ε→0

〈q|e−εĤ ∣∣q ′
〉

with Ĥ =− 1

2m

d2

dq2
+ V (q). (8.62)

Thus in the continuum limit one recovers the well-known Hamiltonian, energies and
eigenfunctions of the harmonic oscillator on the line.

8.5.2 Real Scalar Field

Finally we apply the transfer-matrix method to a non-interacting scalar field theory
with lattice action

S = 1

2

∑

〈x,y〉
(φx − φy)

2 + m2

2

∑

x

φ2
x . (8.63)

The local degrees of freedom are the real φx and the one-site Hilbert space is L2(R).
The full Hilbert space is the tensor product of these spaces over all points of the spa-
tial lattice, i.e. H =⊗

x∈R L2(R). In addition, we connect every field configuration
ω on the spatial lattice to a basis vector |ω〉 = |{φx|x ∈R}〉 in the configuration basis
of H . The symmetric transfer matrix can be expressed as

〈ω|T̂ ∣∣ω′〉= e−F(ω) exp

(
−1

2

∑

x∈R

(
φx − φ′x

)2
)

e−F(ω′), (8.64)

where F only depends on the field values in a given time-slice,

F(ω)= 1

4

∑

〈x,y〉
(φx − φy)

2 + m2

4

∑

x

φ2
x . (8.65)

The diagonal operators are represented by the field operators and the displacement
operators by the conjugated momentum operators

φ̂x|ω〉 = φx|ω〉, π̂x = 1

i

δ

δφx
. (8.66)

To rewrite the transfer matrix in terms of these operators we recall the explicit heat
kernel of the kinetic operator K(π̂)= 1

2

∑
x π̂

2
x ,

〈ω|e−K(π̂)
∣∣ω′〉= 1

(2π)|R|/2
exp

{
−1

2

∑

x

(
φx − φ′x

)2
}
, (8.67)
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to obtain the following representation of the matrix elements of the transfer matrix:

〈ω|T̂ ∣
∣ω′〉= (2π)|R|/2 e−F(φ̂)e−K(π̂)e−F(φ̂), (8.68)

where the operator F(φ̂) is the function (8.65) with the φx replaced by the opera-
tors φ̂x. From the result (8.68) it is evident that T̂ is not just the exponential function
of a simple differential operator Ĥ . Only in the continuum limit we recover the fa-
miliar and simple Hamiltonian of the free scalar field.

8.6 Correlation Inequalities

Correlation inequalities are general inequalities between correlation functions of
statistical systems. Many useful inequalities are known for Ising-type models, see
the textbooks [6, 13]. With the help of these inequalities one can compare correla-
tions functions of lattice models with different couplings or in different dimensions.
For example, knowing that the two-dimensional Ising model shows a spontaneous
magnetization at low temperature one can prove that the same holds true for the
model in higher dimensions. We shall consider spin models with configuration space
Ω = R

V and even single-spin measures dμx . Thus we examine ferromagnetic lat-
tice systems with real spin variables and energy functions

H(ω)=−
∑

K⊂Λ
JKsK, where JK ≥ 0, sK =

∏

x∈K
sx. (8.69)

The monomial sK is the product of spin variables sx on sites in K (with possible
duplications in K). The expectation value of a function O :Ω →R is defined as

〈O〉 = 1

Z

∫

Ω

O(ω) e−βH(ω) dμ(ω), dμ(ω)=
∏

x∈Λ
dμx(sx). (8.70)

With a suitable choice of the single-spin measure dμx we can recover Ising-type
systems or scalar field theories on a lattice. We now prove that the correlation of any
monomial of the spins is non-negative:

Lemma 8.1 (First GKS inequality) For a ferromagnetic system with energy function
(8.69) and even single-spin distribution the inequality

〈sA〉 ≥ 0, sA =
∏

x∈A
sx (8.71)

holds for all A⊂Λ (we allow duplications in A).

Proof To prove this inequality we absorb the inverse temperature β in the couplings
JK and expand the Boltzmann factor according to

e−H(ω) =
∞∑

n=0

1

n!
(∑

K

JKsK

)n

=
∑

n1,...,nV

an1...nV s
n1
1 · · · snVV
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with positive coefficients an1...nV and obtain

Z · 〈sA〉 =
∑

n1,...,nV

an1...nV

∫
s
m1
1 · · · smV

V dμ1(s1) · · ·dμV (sV ),

where mx is the sum of nx and the multiplicity of sx in sA. For even single-spin
measures dμx the last integral vanishes if only one exponent mx is odd, and it is
non-negative if all exponents are even. This means that 〈sA〉 is a sum of non-negative
terms and hence is non-negative. �

To proceed further we introduce the important concept of replicas where one
considers several independent copies of the original system. Here we consider only
two copies characterized by the configurations (ω,ω′) ∈Ω ×Ω . Since they should
be independent we assume that

dμ
(
ω,ω′)= dμ(ω)dμ

(
ω′) and H

(
ω,ω′)=H(ω)+H

(
ω′). (8.72)

We also introduce the rotated configurations in Ω ×Ω ,

σ = 1√
2

(
ω+ω′) and σ ′ = 1√

2

(
ω−ω′). (8.73)

The inverse transformation is

ω= 1√
2

(
σ + σ ′) and ω′ = 1√

2

(
σ − σ ′). (8.74)

The spins of the rotated configuration σ are denoted by σx and σA is defined simi-
larly to sA. A second interesting inequality is the content of

Lemma 8.2 (Ginibre’s inequality) For a ferromagnetic system with energy function
(8.69) and even single-spin distributions the rotated spins obey the inequalities

〈
σAσ

′
B

〉≥ 0 (8.75)

for all subsets A,B ⊂Λ.

Proof The negative energy

−H (
ω,ω′)=

∑

K⊂Λ
JK

[(
σ + σ ′
√

2

)

K

+
(
σ − σ ′
√

2

)

K

]
(8.76)

is a polynomial in σ and σ ′ with only positive coefficients. All terms with negative
coefficients in the expansion of the second contribution on the right hand side in
(8.76) chancel against terms with positive coefficients in the expansion of the first
contribution. Hence, we obtain an expansion similar to the one discussed in the
context of the first GKS inequality. What is left is the proof of

Imn =
∫

R2
σmσ ′n dμ(s)dμ

(
s′
)≥ 0.
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Clearly, the inequality holds for even exponents m and n. But for odd m or n the
integral vanishes since the measure is even both in σ and σ ′ as follows from the
assumption that dμ(s) is even and from

(−ω′,−ω)→ (−σ,σ ′),
(
ω′,ω

)→ (
σ,−σ ′). �

With the help of Ginibre’s inequality we can prove that the connected two-point
correlation function of two monomials of the spins is non-negative:

Lemma 8.3 (Second GKS inequality) With the same assumption as in the previous
lemma we have for all A,B ⊂Λ

〈sAsB〉 − 〈sA〉〈sB〉 ≥ 0. (8.77)

Proof We have

〈sAsB〉 − 〈sA〉〈sB〉 =
〈
sA

(
sB − s′B

)〉

=
〈(

σ + σ ′
√

2

)

A

[(
σ + σ ′
√

2

)

B

−
(
σ − σ ′
√

2

)

B

]〉
,

where the product 〈sA〉〈sB〉 turns into one expectation value in the doubled sys-
tem. The expression between square brackets is a polynomial in σ,σ ′ with positive
coefficients. By using Ginibre’s inequality we verify the inequality (8.77). �

Now we specialize to ferromagnetic systems with pair interactions,

H(ω)=−
∑

x,y∈Λ
Jxysxsy −

∑

x

hxsx, Jxy > 0 (8.78)

for which the following inequality holds:

Lemma 8.4 (Percus’ inequality) In the doubled ferromagnetic system we have
〈
σ ′
A

〉≥ 0, ∀A⊂Λ. (8.79)

Proof The linear transformation (8.74) is a (improper) rotation such that

−H(ω)−H
(
ω′)=

∑

x,y∈Λ
Jxy

(
σxσy + σ ′

xσ
′
y

)+√
2
∑

x

hxσx.

Now we Taylor-expand the exponential of
∑

Jx,yσ
′
xσ

′
y in the expectation value

〈
σ ′
A

〉= 1

Z2

∫

Ω×Ω
dμ(ω)dμ

(
ω′)σ ′

A e−H(ω)−H(ω′)

and obtain a series with terms
∫

Ω×Ω
dμ(ω)dμ

(
ω′)σ ′n1

1 · · ·σ ′nV
V exp

(∑

x,y

Jxyσxσy +
√

2
∑

x

hxσx

)
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and positive coefficients. Since the measure is even in σ ′ the last integral vanishes if
one or more exponents nx are odd. But for even nx the integral is non-negative and
this proves the inequality of Percus. �

Apart from the inequalities discussed in this section there are numerous other
correlation inequalities, for example inequalities for the expectation values of prod-
ucts of three or four spin functions. For a detailed discussion I recommend [14] and
the textbooks [6, 13]. In passing we note that almost all inequalities apply to ferro-
magnetic systems only, the well-known exception being the FKG inequalities. For
correlation inequalities for anti-ferromagnetic systems you may consult [15].

Application of Correlation Inequalities The second GKS inequality is of partic-
ular importance, since in the form

〈sAsB〉 − 〈sA〉〈sB〉 = ∂〈sA〉
∂JB

≥ 0 (8.80)

it proves the monotony of correlation functions as functions of the ferromagnetic
couplings. The expectation value of any monomial of the spins 〈sA〉 increases mono-
tonically with

• an increasing external field,
• an increasing ferromagnetic coupling,
• a decreasing temperature.

Furthermore, the inequality (8.80) allows for a comparison of different models
in statistical mechanics. For example, if a ferromagnetic spin model with nearest
neighbor interaction has an ordered phase, it remains in the ordered phase if addi-
tional ferromagnetic long-range interactions are ‘switched on’ since both the mag-
netization and the critical temperature increase. Moreover, the inequality shows that
the spontaneous magnetization decreases if we heat the system. The same happens
if we increase the coordination number of a lattice system since we add additional
ferromagnetic terms. For example, for fixed coupling and temperature the magne-
tization in the three- and four-dimensional hypercubic Ising models are larger than
in the two-dimensional model. Also, at fixed Ising coupling J the critical tempera-
ture increases monotonically with the dimension of the system. This qualitative but
rigorous predictions agree with the mean field results (7.23) and (7.24). The same
inequality shows that 〈sA〉 increases monotonically with the lattice size. For the
Ising model these expectation values are bounded by 1 such that they converge in
the thermodynamic limit. The Ginibre inequality was applied to prove the existence
of the thermodynamic limit for the free energy density and spin correlations of the
ferromagnetic classical XY-model [16].

8.7 Roots of the Partition Function

The zeros of the partition function ZΛ(β,h) are intimately related to possible phase
transitions as was observed by LEE and YANG in their two pioneering papers [17,
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18].1 As a sum of positive terms the partition function is positive in the physical
domain with real magnetic field. Thus, in a search of zeros we must admit complex
parameters and in particular a complex magnetic field. Following Lee and Yang we
study a lattice gas with energy function:

H =−ε
∑

〈x,y〉
nxny −μ

∑

x

nx, nx ∈ {0,1} (8.81)

or, what amounts to the same, an Ising model with magnetic field,

H(ω)=−J
∑

〈x,y〉
sxsy − h

∑

x

sx, sx ∈ {−1,1}. (8.82)

The occupation numbers nx , coupling and chemical potential of the lattice gas are
related to the spins sx , coupling and magnetic field of the Ising model by

nx = (sx + 1)/2, ε = 4J and μ= 2h− 4dJ.

In the expansion of the Ising-model partition function in powers of exp(βh),

ZΛ(h)=
V∑

m=−V,−V+2,...

eβhm Am, Am =
∑

∑
sx=m

exp

(
K

∑

〈x,y〉
sxsy

)
, (8.83)

we set m+ V = 2n such that n takes the values 0,1, . . . , V and obtain

ZΛ(z)= z−V/2
V∑

n=0

anz
n, where an =A2n−V , z= e2βh. (8.84)

The sum defines a polynomial of degree V in the fugacity z. Since all an are positive
we conclude that on a finite lattice the partition function is non-zero and analytic in
a vicinity of the positive real semi-axis in the complex fugacity plane. This means
that the free energy has no singularities for any real magnetic field and thus shows
no phase transition in a finite volume when h varies.

However, in the thermodynamic limit V →∞ the partition function zeros may
pinch the semi-axis R

+. Phase transitions are localized at the intersection of the
set of zeros with the semi-axis. The intersection points determine the critical fields
where phase transitions may occur. On the other hand, if there exists a region G in
the complex z-plane which contains no zeros and encloses the positive real semi-
axis, then the thermodynamic potentials are analytic for V →∞.

Because the coefficients of the polynomial in (8.84) are real and positive, all roots
appear in complex-conjugated pairs in the complex fugacity plane, away from the
real, positive semi-axis. There is a further property of the roots which follows from
the symmetry H(ω,h)=H(−ω,−h), where −ω is obtained from ω by a flip of all
spins. This symmetry implies that the partition function is an even function of h and
thus is invariant under z→ 1/z:

ZΛ(z)=
∑

ω

e−βH(ω,h) = ZΛ

(
1

z

)
. (8.85)

1An elementary discussion of the subject can be found in [9].
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It follows that the coefficients of the polynomial in (8.84) are not independent,

an = aV−n (8.86)

and that with z also 1/z is a root of the partition function. Thus, the non-real roots
which are not on the unit circle in the fugacity plane are members of a quartet
{z, z̄,1/z,1/z̄} of roots. The non-real roots on the unit circle or the real roots which
are not on the unit circle are members of a doublet {z,1/z} of roots. Only the root
z=−1 is not related to another root.

In the high temperature limit K = 0 and the partition function

lim
T→∞ZΛ(z)= z−V/2(1+ z)V (8.87)

has the V -fold zero z=−1. On the other hand, in the low temperature limit K =∞
and the partition function

lim
T→0

ZΛ(z)= z−V/2edVK
(
1+ zV

)
(8.88)

has its roots uniformly distributed on the unit circle,

zn = e2π i(n−1/2)/V , n= 1, . . . , V .

Below we shall argue that for all K between these two extreme values the roots of
the partition functions lie on the unit circle. This theorem of Lee and Yang applies to
general ferromagnetic systems for which the couplings Jxy fall off with the distance
rapidly enough in order to ensure the existence of the thermodynamic limit.

8.7.1 Lee–Yang Zeroes of Ising Chain

To find the Lee–Yang zeros for the one-dimensional Ising model we observe that the
partition function (8.8) is proportional to a polynomial of degree N in the fugacity
z= exp(2βh). It vanishes if and only if

λ+ = einπ/Nλ−, n= 1,3, . . . ,2N − 1.

With the expressions (8.6) for the eigenvalues of the transfer matrix we obtain

i sin

(
nπ

2N

)
cosh(βhn)=

√
e−4K + sinh2(βhn) cos

(
nπ

2N

)
,

and after setting βhn = iθn we end up with

sin
nπ

2N
cos θn =

√
sin2 θn − e−4K cos

(
nπ

2N

)
.

Squaring this equation yields the following formula for the phases of the Lee–Yang
zeros zn = exp(2iθn) in the complex fugacity plane:

cos θn =
√

1− e−4K cos

(
nπ

2N

)
, n= 1,3, . . . ,2N − 1. (8.89)
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Fig. 8.1 The phases 2θn of
the Lee–Yang zeros zn for the
Ising chain with 16 sites

Fig. 8.2 The Lee–Yang zeros in the complex fugacity plane at different temperatures. At T = 0
the zeros are uniformly distributed on the unit circle. With increasing temperature the zeros move
away from the positive real axis

Since the square root takes its values in the interval [0,1] we obtain a real solution
θn for every n such that all zeros zn lie on the unit circle in the complex z-plane. In
Fig. 8.1 we plotted the phases

2θn = 2 arccos(α cosxn) with α2 = 1− e−4K,xn = nπ

2N
, (8.90)

for different values of α. At zero temperature α = 1 and the phases 2θn = 2xn are
uniformly distributed within the interval [0,2π]. At finite temperatures α < 1 and
the 2θn take their values in the interval [Δ,2π −Δ] with Δ= 2 arccosα > 0. This
estimate is independent of the lattice size. We conclude that the free energy density
shows not singularities at finite temperatures and for any real magnetic field. Only
for T = 0 and in the thermodynamic limit do the zeros of the partition function pinch
the positive real axis. This points to a singularity of the free energy at z= 1 and thus
to a phase transition at vanishing magnetic field and zero temperature. Figure 8.2
shows the distribution of zeros of ZΛ(z) on the unit circle in the fugacity plane for
30 sites and different values of the temperature dependent parameter α. Figure 8.3
shows the zeros for α = 0.9 for three different lattice sizes. In the thermodynamic
limit N →∞ we observe an accumulation of the partition function zeros at the
so-called edge singularity at

�z= cos(2 arccosα) and �z= sin(2 arccosα).



168 8 Transfer Matrices, Correlation Inequalities and Roots of Partition Functions

Fig. 8.3 The Lee–Yang zeros, located in the complex fugacity plane for different values of N and
at a fixed positive temperature corresponding to α = 0.9

8.7.2 General Ferromagnetic Systems

In their two classic papers Lee and Yang showed that the zeros of the Ising-model
partition function lie on the unit circle and proposed a program to analyze phase
transitions in terms of these zeros. Since their proposal the Lee–Yang theorem has
been used to prove the existence of infinite-volume limits for spin models, to prove
correlation inequalities and inequalities for critical exponents, see [13].

The Lee–Yang theorem states that the partition function

ZΛ(β)=
∫

dμ(ω) exp
(−βHΛ(ω)

)
, dμ(ω)=

∏

x∈Λ
dμ(sx), (8.91)

of ferromagnetic systems with energies

HΛ =−
∑

x �=y∈Λ
Jxysxsy −

∑

x∈Λ
hxsx, Jxy ≥ 0, (8.92)

and a certain class of single-spin distributions dμ(s) is non-zero whenever �hx > 0
on all sites. It was proved by Newman [19–21] for one-component systems with an
even single-spin distribution dμ with the property that

∫
ehs dμ(s) �= 0 for �(h) �= 0. (8.93)

For lattice systems with continuous spins, for example lattice field theories, the
single-spin distribution should also fall off rapidly,

∫
eαs

2
dμ(s) <∞, α <∞, (8.94)

for the partition function to exist. A rapidly decreasing and even measure on R with
property (8.93) is said to have the Lee–Yang property. This property means that
the Fourier transform of the single-spin distribution has its zeros on the real axis.
The Lee–Yang theorem also applies to spin systems with site-dependent single-spin
distributions in dμ(ω)=∏

dμx(sx), provided all dμx fulfill the condition (8.93):

Theorem 8.2 (Lee–Yang circle theorem) If all single-spin distributions dμx of a
ferromagnetic spin system with T = R satisfy the Lee–Yang property and if all hx
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have a positive real part then the partition function ZΛ[h] is non-zero. If the external
field is constant, hx = h, then all zeros of ZΛ(h) are imaginary.

This theorem means that the Lee–Yang property holds for Jxy ≥ 0 in case it
holds for Jxy = 0. For the Ising model with identical single-spin distributions (7.16)
the integral (8.93) is cosh(h) and the theorem applies: all zeros of the Ising-model
partition function as function of the fugacity lie on the unit circle, similarly as for
the Ising chain. The single-spin distribution of a lattice φ4 theory,

dμ(φ)= exp
(−λφ4 −μφ2)dφ, λ > 0,μ ∈R, (8.95)

also satisfies the Lee–Yang property such that the circle theorem applies to the
Schwinger functional of a lattice φ4 theory.

Recent proofs of the circle theorem use multi-affine Lee–Yang polynomials to-
gether with the Asano contraction, see [22–24]. For scalar field theories one can
easily prove a weaker result [13, 25], which is based on correlation inequalities:

Theorem 8.3 (Dunlop) Consider a ferromagnetic system with energy function
(8.92) and single-spin distribution

dμ(s)= e−P(s), P (s)= λs4 +μs2, λ > 0, μ real. (8.96)

If all hx are in the wedge |�hx | ≤ �hx then the partition function is non-zero,
∣∣ZΛ[h]

∣∣≥ ZΛ[h= 0]> 0. (8.97)

Proof We introduce two independent copies of the spin system to write

∣∣Z[h]∣∣2 =
∫

dμ(ω)dμ
(
ω′) e−βH(ω)−βH ∗(ω′) (8.98)

where H ∗ is the energy function (8.92) with the hx replaced by their complex conju-
gate h∗x . First we transform to the rotated frame with coordinates σx,σ ′

x introduced
in (8.73), and for these we use polar coordinates

σx = ρx cos θx, σ ′
x = ρx sin θx.

In terms of polar coordinates the single site measure of the doubled system contains
the polynomial

P(s)+ P
(
s′
)= λρ4

4
(3− cos 4θ)+μρ2

such that the single site measure takes the form

e−P(s)−P(s′) ds ds′ = ρ exp

(
−3

4
λρ4 −μρ2

)
exp

(
1

4
λρ4 cos 4θ

)
ρ dρ dθ. (8.99)

The second step in the proof is to rewrite the integrand in (8.98) in polar coordinates.
With
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∑

x �=y
Jxy

(
sxsy + sxs

′
y

)=
∑

x �=y
Jxyρxρy cos(θx − θy),

∑

x

(
hxsx + h∗xsx

)=
∑

x

ρx
(
Δ+eiθx +Δ−e−iθx

)
,

where we abbreviated √
2Δ± =�hx ±�hx

we obtain for the exponent in (8.98)

−βH(ω)− βH ∗(ω′)=
∑

x �=y
Jxyρxρy cos(θx − θy)+

∑

x

ρx
(
Δ+eiθx +Δ−e−iθx

)
.

At this point we use the notion of a positive definite function f (θ)= f (θ1, . . . , θV )

of angular variables θx ∈ [0,2π]. Such a function is called positive definite if the
coefficients fn1...nV in its Fourier series

f (θ1, . . . , θV )= 1

(2π)V/2

∑

ni∈Z
fn1...nV exp

(
i
∑

nxθx

)

are all non-negative, fn1...nV ≥ 0. The set of positive definite functions is closed
under exponentiation, multiplication and multiplication with a positive real constant.

Clearly, for positive λ the last exponent in (8.99) is a positive definite function
such that the density of dμ(ω)dμ(ω′) is a positive definite function as well. In
addition, the condition |�hx | ≤ �hx in the theorem implies that Δ± are both non-
negative, such that −βH(ω)−βH ∗(ω) and its exponential are both positive definite
functions. We conclude that under the assumption in the theorem the integrand of

∣∣ZΛ[h]
∣∣2 =

∫ ∏

x

ρs dρx dθxF (ρ1, . . . , ρV ; θ1, . . . , θV )

is a positive definite function, the Fourier coefficients of which are monotonic func-
tions of Δ+ and Δ−. It follows that the integral, which is proportional to the Fourier
coefficient F0...0, decreases when we replace the larger of the two numbers Δ+,Δ−
by the smaller one, which is �hx − |�hx |. But then |Z|2 becomes the square of the
partition function for the real magnetic field x→�hx − |�hx | such that

∣∣ZΛ[h]
∣∣≥ ZΛ

[�h− |�h|]≥ ZΛ[h= 0]> 0. (8.100)

In addition, since ZΛ[h] = ZΛ[−h], it follows that the partition function is also
non-zero if all hx are in the wedge |�hx | ≤ −�hx . �

In many applications one considers homogeneous fields for which the zeros of
the partition function must lie in the forward or backward ‘light-cones’ in the com-
plex h-plane. Note that the theorem is not as strong as the circle theorem, which
nails down the zeros to the imaginary axis in h-space. But the proof given by Dun-
lop also extends to Z2 gauge theories [26]. For a general lattice field theory with
multidimensional target space (and some invariant single-spin distribution) no vari-
ant of the Lee–Yang theorem may exist. Only for simple systems like the O(2) and
O(3) models could such theorems be established, see [19–21, 27].
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A decade after the work of Lee and Yang, Fisher extended the study of the Ising
partition function zeros to the complex temperature plane [28]. After these early
results there have been numerous studies of Lee–Yang and Fisher zeros in a variety
of models.

8.8 Problems

8.1 (Transfer matrices for modified Ising chains)

(a) Find the transfer matrix for a Ising chain in which the spins may take the three
values {+1,0,−1}.

(b) Find the transfer matrix for a Ising chain with first and second neighbor inter-
actions,

H(ω)=−J
∑

x

sxsx+1 −K
∑

x

sxsx+2 − h
∑

x

sx, sx =±1.

Hint: consider the transfer matrix of a pair to the neighboring pair. An analy-
sis of this model which circumvents diagonalizing the resulting 4 × 4 transfer
matrix is given in [29].

8.2 (Potts chain revisited) In Sect. 8.2 we calculated the free energy density for the
Potts chain in the thermodynamic limit. Compute the magnetization m(T ,h) and
the susceptibility χ(T ,h). Compare the results with the corresponding results for
the Ising chain.

8.3 (Transfer matrix for harmonic oscillator) Consider the transfer kernel (8.54) for
the oscillator on the lattice with harmonic oscillator potential V (q)=mω2q2/2.

• Prove the useful identity

λ2
0 â

†T
(
q, q ′

)= â′T
(
q, q ′

)
, (8.101)

where â† acts on the argument q and â′ on the argument q ′,

â† = d

dq
−mαq, â′ = − d

dq ′
−mαq ′.

The explicit expressions for α and λ0 are found in Sect. 8.5.1.
• Use the result to show that if ψ is an eigenfunction of the transfer matrix T̂ with

eigenvalue λ
∫

dq ′ T
(
q, q ′

)
ψ
(
q ′
)= λψ

(
q ′
)
,

and that â†ψ is an eigenfunction as well with eigenvalue λ2
0λ.

• In Sect. 8.5.1 we calculated the eigenstate ψ0 with largest eigenvalue λ0 of the
transfer matrix. Determine the other eigenvalues and eigenfunctions with purely
algebraic means.
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Chapter 9
High-Temperature and Low-Temperature
Expansions

Series expansions remain, in many cases, one of the most accurate ways of es-
timating critical exponents. Historically it was the results from series expan-
sions that suggested universality at criticality. Two expansions will be consid-
ered in this chapter. In the high-temperature series the Boltzmann factor is ex-
panded in powers of the inverse temperature and the sum over all configurations
is taken term by term. In the Ising model this leads to an expansion in powers
of tanh(J/T ) ) 1. In the low-temperature expansion configurations are counted
in order of their importance as the temperature is increased from zero. Starting
from the ground state the series is constructed by successively adding terms from
1,2,3, . . . flipped spins. In the Ising model this leads to an expansion in powers of
exp(−2J/T )) 1.

Each term in a series is represented by a graph on a lattice and constructing the
series amounts to counting the graphs belonging to a fixed order in the expansions.
The expansions can be used to approximate the thermodynamic potentials and cor-
relation functions at low and high temperatures. The hope is that the expansions
are sufficiently well-behaved in order to extract the singular behavior from a lim-
ited number of lowest order terms. Confidence in the method lies in the large body
of circumstantial evidence available. Series expansions agree well with high accu-
racy Monte Carlo simulations, renormalization-group results and results for exactly
solvable models.

The high- and low-temperature expansions treated in this chapter are covered
in numerous textbooks and papers. For a further reading beyond the introductory
material presented in this chapter you may consult the textbooks [1–4].

9.1 Ising Chain

To become acquainted with the high- and low-temperature expansions, we first con-
sider these expansions for the Ising chain.

A. Wipf, Statistical Approach to Quantum Field Theory, Lecture Notes in Physics 864,
DOI 10.1007/978-3-642-33105-3_9, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 9.1 Spin configurations
of the Ising chain for different
energies

9.1.1 Low Temperature

The configuration with minimal energy is characterized by an alignment of the
spins—all spins point in the direction of the magnetic field. Configurations with
some spins flipped have higher energy and can only be populated for non-zero tem-
perature. But for low temperature the corresponding occupations numbers are ex-
ponentially small. For warming up we consider the chain Λ with only five sites.
The 25 configurations form eight classes and each class is characterized by its en-
ergy. Representatives of the classes are depicted in Fig. 9.1. The two classes with
aligned spins in the first row contain one element each, whereas all other classes
contain five elements. Assuming h > 0 the energy of the vacuum configuration is
E0 =−5J − 5h and we obtain the following low-temperature expansion of the par-
tition function for e−βJ ) 1:

ZΛ = e−βE0
(
1+ e−10βh + 5e−β(4J+2h) + 5e−β(4J+8h)

+ 5e−β(4J+4h) + 5e−β(4J+6h) + 5e−β(8J+4h) + 5e−β(8J+6h)).

The systematic low-temperature expansion based on graphs is discussed in Sect. 9.3
for the more interesting Ising models in higher dimensions.

9.1.2 High Temperature

For simplicity we consider the high-temperature expansion for the zero-field Ising
model. Thereby we expand the partition function on a hyper-cubic lattice Λ in d

dimensions in powers of the small parameter ν = tanhK = tanhJ/T ,

ZΛ =
∑

ω

∏

〈x,y〉
eKsxsy = (coshK)P

∑

ω

∏

〈x,y〉
(1+ νsxsy), (9.1)

where P = dV denotes the number of nearest-neighbor pairs and the last equation
holds because sxsy ∈ {−1,1}.

The periodic Ising chain with only three sites has three nearest-neighbor pairs
and the product in (9.1) contains three factors,

∏

〈x,y〉
(1+ νsxsy)= (1+ νs1s2)(1+ νs2s3)(1+ νs3s1).
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Fig. 9.2 Diagrams associated
with the high-temperature
expansion of the Ising chain

The expansion of this expression in powers of the parameter ν yields 2P = 8 terms,

ZΛ = (coshK)3
∑

ω

(
1+ ν(s1s2 + s2s3 + s3s1)

+ ν2(s1s2s2s3 + s1s2s3s1 + s2s3s3s1)+ ν3(s1s2s2s3s3s1)
)
. (9.2)

Next we assign to each term in this expansion a diagram on the periodic chain as
follows: we connect two adjacent sites x and y by a line—in the following called
bond or link—if the product of their spins occurs in the term under consideration.
Those sites where at least one bond ends form the vertices of the associated diagram.
We call the number of bonds attached to a vertex the order of the vertex.

Figure 9.2 shows the eight diagrams corresponding to the high-temperature ex-
pansion (9.2). Since the small parameter ν enters via the combination νsxsy we see
that all diagrams of order n in ν have n bonds. Because of the identity

∑

sx=−1,1

snx =
{

2, n even,
0, n odd,

(9.3)

only diagrams for which all vertices have an even order contribute to ZΛ. Such dia-
grams are called closed. On the chain with three sites only the first and last diagram
in Fig. 9.2 are closed such that

ZΛ = cosh3 K
(
8+ 8ν3)= 23(cosh3 K + sinh3 K

)
.

More generally, the chain with N sites has only two closed diagrams: one diagram
has no bond and the other has the maximal number of N bonds. It follows that only
two diagrams contribute to the partition function,

ZΛ = 2N
(
coshN K + sinhN K

)
. (9.4)

The high-temperature expansion leads to the exact result of the partition function.

9.2 High-Temperature Expansions for Ising Models

The high-temperature expansion is an expansion in the small parameter ν = tanhK ,
where K = J/T . It corresponds to the strong-coupling expansion in quantum field
theory.
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Fig. 9.3 Diagram as it occurs
in the high-temperature
expansion (9.5). The graph
corresponds to the spin
product sxs3

y s
2
z s

2
us

2
v = sxsy

9.2.1 General Results and Two-Dimensional Model

We consider the zero-field Ising model defined by the Hamiltonian (6.2) with h= 0.
As starting point we choose the expansion (9.1) in powers of ν) 1,

ZΛ = (coshK)P
∑

ω

(
1+ ν

∑

〈x,y〉
sxsy + ν2

∑

〈x,y〉�=〈x′,y′〉
sxsysx′sy′ + · · ·

)
. (9.5)

To each spin product we assign the diagram where nearest neighbors are connected
by a line if their product occurs in the spin product. Figure 9.3 shows the diagram
associated to the spin product sxs3

ys
2
z s

2
us

2
v . The diagram does not contribute to the

partition function since it has the odd vertices x and y. Only closed diagrams con-
tribute, such that on a finite lattice with P nearest neighbor pairs1

ZΛ = (coshK)P 2V
P∑

�=0

z′�ν�, z′0 = 1. (9.6)

where z′� counts the number of closed diagrams with � bonds. Table 9.1 contains
the closed diagrams for the periodic Ising model on a square lattice with V sites
and P = 2V nearest-neighbor pairs with eight or less bonds. The number in the
third column counts the number of diagrams of the corresponding class. For exam-
ple, the number V (V − 5)/2 in the second to last row of this table is explained as
follows: We may place the first plaquette somewhere on the lattice and we have V
possibilities to do this. Then the remaining number of locations of the second pla-
quette subject to the constraint that none of the edges of the two plaquettes coincide
is V − 5. Hence, there are V (V − 5) possibilities to place the two plaquettes on
the lattice. However, since we obtain the same diagram under a permutation of the
plaquettes we finally end up with V (V − 5)/2 different diagrams.

The corresponding expansion for the 2d−Ising model partition function reads

ZΛ = (coshK)P 2V
(

1+ V ν4 + 2V ν6 + V

2
(V + 9)ν8 + 2V (V + 6)ν10 + · · ·

)
.

(9.7)

1Coefficients in an expansion in ν are marked with a stroke.
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Table 9.1 Closed diagrams
contributing to the
high-temperature expansion
of the partition function of the
two-dimensional Ising model
to order of ν8

# bonds � Diagram Number z′�

4 V V

6 2V 2V

8 4V

2V 1
2V

2 + 9
2V

1
2V (V − 5)

V

Only intrinsic quantities have a well-defined thermodynamic limit and thus we turn
to the free energy density, given by

−βf = lim
V→∞

1

V
logZΛ = log

(
2 cosh2 K

)+
∑

�≥4

f ′
�ν

�. (9.8)

Inserting the power series for the partition function one obtains the expansion co-
efficients f ′

� of the free energy density. Only connected diagrams contribute to the
free energy density such that the coefficients f ′

� are volume-independent. For the
Ising model on a square lattice

−βf = log
(
2 cosh2 K

)+ ν4 + 2ν6 + 9

2
ν8 + 12ν10 + · · · . (9.9)

Correlation Functions

Above the critical temperature the magnetization vanishes for zero field and the
susceptibility χ is given by

χ = 1

V

∑

x,y

〈sxsy〉 =
∑

y

〈sxsy〉. (9.10)

Again, we associate each term of the high-temperature expansion

〈sxsy〉 = coshP K

ZΛ

∑

ω

sxsy

(
1+ ν

∑

〈uv〉
susv + ν2

∑

〈uv〉�=〈u′v′〉
susvsu′sv′ + · · ·

)
(9.11)

with a diagram. For example, consider the diagram in Fig. 9.4 which contributes
2V ν8 to the sum over all configurations in (9.11). More generally, a diagram with
� bonds contributes 2V ν� if the vertices x and y are odd and all other vertices are
even. Because of the relation (9.3) the other diagrams do not contribute. The factor
2V coshP K cancels against the same factor in ZΛ. Thus we have the
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Fig. 9.4 The
high-temperature expansion
of the 2-point correlation
function of the
two-dimensional Ising model.
The diagram corresponds to
the term s2

x s
4
y s

4
u′s

2
us

2
v s

2
u′′s

2
v′′

Lemma 9.1 The high-temperature expansion of the 2-point function reads

〈sxsy〉 =
∑

� g
′
�ν

�

∑
� z

′
�ν

�
, (9.12)

where g′� denotes the number of diagrams with � bonds and only even vertices, with
the exception of the odd vertices x and y.

This lemma immediately leads to the

Proposition 9.1 The coefficient g′� vanishes if � is less than the shortest distance
d(x, y) (on the lattice) between x and y.

If the corollary was not true, then there would exist a diagram with less than �

bonds and odd vertices x and y, with all other vertices even. It follows that the sites
x and y are not connected by a line of bonds or that the diagram consists of at least
two disconnected sub-diagrams. At least one connected sub-diagram contains x but
not y. According to the relation

∑

vertices

vertex order = 2 · number of bonds (9.13)

the sum of vertex orders for every connected sub-diagram must be even. But for
the sub-diagram containing x but not y and contributing to 〈sxsy〉 the sum of vertex
orders is odd, since all vertices are even, with the exception of the odd vertex x. But
this contradicts the selection rule (9.13) and thus proves Proposition 9.1.

The proposition tells us that for T � J the 2-point function falls off exponen-
tially with the shortest distance d(x, y) of x and y on the lattice,

〈sxsy〉 =O
(
νd(x,y)

)=O
(
e−d(x,y)/ξ

)
,

1

ξ
= log

1

ν
� 1. (9.14)

As expected, the correlation length ξ decreases with increasing temperature since
the thermal fluctuations suppress spin–spin correlations.
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Fig. 9.5 The leading high-temperature diagrams contributing to χ

Susceptibility

Only two-point functions with d(x, y) ≤ n contribute to the high-temperature ex-
pansion of the susceptibility in (9.10) to order n in ν. Hence, the susceptibility in
every order n is given by a finite number of terms. In the two-point functions (9.12)
the volume-factor cancels in the ratio of formal power series. Figure 9.5 shows all
diagrams that contribute to the numerator in (9.12) to order ν6. Together with the
high-temperature expansion of the denominator given in (9.7) we obtain

〈sxsy〉 =
(
2ν2 + 4ν4 + (2V + 10)ν6 + · · ·)/(1+ V ν4 + · · ·),

= 2ν2 + 4ν4 + 10ν6 +O
(
ν8). (9.15)

The susceptibility χ contains this contribution four times. Similarly, one considers
all permitted diagrams for lattice points x, y with d(x, y) ≤ n and calculates the
corresponding two-point function. Adding these functions as in (9.10) leads to the
high-temperature expansion of χ . To order ν10 one finds

χ(v)=
∑

χ ′
�ν

� = 1+ 4ν + 12ν2 + 36ν3 + 100ν4 + 276ν5 + 740ν6

+ 1972ν7 + 5172ν8 + 13492ν9 + 34876ν10 + · · · . (9.16)

To convert this series into a series in K ,

χ(K)=
∑

�≥0

χ�K
� (9.17)
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we substitute ν = tanhK into (9.16) and expand the resulting expression in powers
of K . This yields the following expansion in inverse powers of the temperature:

χ(K)= 1+ 4K + 12K2 + 104/3K3 + 92K4 + 3608/15K5 + 3056/5K6

+ 484528/315K7 + 400012/105K8 + 26548808/2835K9

+ 107828128/4725K10 + · · · . (9.18)

This series was calculated to 21st order in [5, 6]. Terms of even higher order are
found in [7] and for generalized Ising models with higher spins in [8].2

Extrapolation to the Critical Point

The power series (9.18) has a finite radius of convergence R > 0, and thus defines an
analytical function on the disc |K|< R. Since all coefficients χ� are positive there
must be a singularity at the point K = R on the real axis. We identify this singular
point with the critical value Kc = J/Tc. The ratio test yields the critical temperature

R = lim
�→∞

∣∣∣∣
a�

a�+1

∣∣∣∣=
J

Tc
. (9.19)

More accurate values for the critical temperature and critical exponent γ are ob-
tained by fitting the truncated power series to the expected scaling of the suscepti-
bility near the critical point,

χ(K)=
∑

χ�K
� ∝ (1−K/Kc)

−γ

= 1+
∞∑

�=1

γ (γ + 1) · · · (γ + �− 1)

�!
(
K

Kc

)�

. (9.20)

The ratio of coefficients defines a linear function in 1/�,

χ�

χ�−1
= 1

Kc

+ γ − 1

Kc

1

�
, (9.21)

and the slope of this function together with its value at 1/�→ 0 yield the critical
exponent and the critical temperature. The ratios χ�/χ�−1 of the coefficients to order
25 and the linear fit are depicted in Fig. 9.6. The linear interpolation yields

Tc ≈ 2.26694J and γ ≈ 1.69129

2.26695
+ 1 = 1.74606. (9.22)

The estimates agree well with the exact values in (6.7),

Tc = 2J

log(1+√
2)

≈ 2.26919J and γ = 7

4
= 1.75. (9.23)

2The coefficients of orders 20 and 21 in [6–8] do not agree with those in [5]. According to a private
communication by Paolo Butera, the numbers in [5] are probably erroneous.
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Fig. 9.6 The ratios χ�/χ�−1
for the high-temperature
expansion (9.17) to order 25.
From the slope and
intersection with the vertical
axis we read off the critical
exponent γ and the critical
temperature Tc of the 2d
Ising model

The on-line library [8] contains further high-temperature expansions of several basic
observables in Ising models with spins 1/2,1,3/2,2,5/2,3,7/2,5 and ∞—in two
dimensions on the square lattice and in three dimensions on the simple-cubic and
the body-centered cubic lattices.

9.2.2 Three-Dimensional Model

High-temperature expansions for the three-dimensional Ising model to order 10 in
the inverse temperature are found in the early work [9]. With refined techniques
more and more higher order terms were calculated in [10–13] and with the steady
increase of computer power this was possible for a large class of spin models and
lattice field theories. The diagrammatic method has been applied to Ising-type mod-
els and the resulting coefficients to order 25 are tabulated in [8].

Free Energy Density and Specific Heat

The finite lattice method developed in [14] avoids the tedious work of counting all
the high-temperature diagrams. Nevertheless, the amount of calculation still grows
exponentially with the order of the expansion. In [15] a variant of the method was
applied to calculate the high-temperature expansion of the free energy density,

−βf = log
(
2 cosh3 K

)+
∑

�≥4

f ′
�ν

�, ν = tanhK, (9.24)

to order 46. The expansion coefficients f ′
� are listed in Table 9.2. Differentiating

βf (K) twice with respect to β one obtains the expansion of the specific heat to the
same order. The corresponding expansion in K to order 12 reads

c=
∑

α�K
�| = 3K2 + 33K4 + 542K6 + 123547/15K8

+ 14473442/105K10 + 11336607022/4725K12 + · · · . (9.25)
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Table 9.2 High-temperature
expansion coefficients f ′

� to
order 46 [15]

� f ′
� � f ′

�

2 0 26 4437596650548

4 3 28 525549581866326/7

6 22 30 6448284363491202/5

8 375/2 32 179577198475709847/8

10 1980 34 395251648062268272

12 24044 36 21093662188820520521/3

14 319170 38 126225408651399082182

16 18059031/4 40 4569217533196761997785/2

18 201010408/3 42 291591287110968623857940/7

20 5162283633/5 44 8410722262379235048686604/11

22 16397040750 46 14120314204713719766888210

24 266958797382

Since this is an expansion in K2 we fit the high-temperature series to the scaling
law

c=
∑

α2�K
2� ∼

(
1− K2

K2
c

)−α
. (9.26)

For large � the ratio of coefficients define a linear function of 1/�, similarly as for
the susceptibility,

α2�

α2�−2
→ 1

K2
c

+ α − 1

K2
c

1

�
. (9.27)

Figure 9.7 shows the ratios for all coefficients to order 46. The three ratios involving
the coefficients of lowest orders 2,4,6 and 8 do not fall onto a straight line and are
left out in the data analysis. The linear fit included in Fig. 9.7 yields

Tc = 4.5102J and α = 0.1226. (9.28)

We can do even better when we estimate the critical temperature and exponent from
the ratios r� = α2�/α2�−2 of two neighboring � according to

T (�)
c = J

√
(�+ 1)r�+1 − �r� and α(�) =− (�2 − 1)r�+1 − �2r�

(�+ 1)r�+1 − �r�
(9.29)

and let � become large. Figure 9.8 contains the estimates for Tc/J for all available
orders. Leaving out the lowest five estimates which do not fall onto a straight line
the linear extrapolation leads to

Tc = 4.512176J. (9.30)

Computer simulations in combination with finite size scaling analysis predict a crit-
ical temperature Tc ≈ 4.511516J [16].
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Fig. 9.7 The ratios
α2�/α2�−2 for the
high-temperature expansion
(9.25) to order 46. From the
slope and intersection with
the vertical axis we read off
the critical exponent α and
the critical temperature Tc of
the 3d Ising model

Fig. 9.8 The local estimates
T
(�)
c for the critical

temperature given in (9.29)
for the high-temperature
expansion to order 46

Fig. 9.9 The local estimates
α(�) for the critical exponent
α according to (9.29) for the
high-temperature expansion
to order 46

Figure 9.9 shows the local estimates α(�) defined in (9.29) for � up to 22. Dis-
carding the five lowest orders in the high-temperature expansion a linear fit yields
the critical exponent

α = 0.109385. (9.31)

This compares well with the precise estimate α = 0.110(1) taken from [17]. Further
improvement is possible if one uses the modified-ratio method and also includes
corrections to scaling.
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Table 9.3 Expansion
coefficients of χ(ν) for the
Ising model on a cubic lattice
(taken from [8])

� χ ′
� � χ ′

�

1 6 14 3973784886

2 30 15 18527532310

3 150 16 86228667894

4 726 17 401225368086

5 3510 18 1864308847838

6 16710 19 8660961643254

7 79494 20 40190947325670

8 375174 21 186475398518726

9 1769686 22 864404776466406

10 8306862 23 4006394107568934

11 38975286 24 18554916271112254

12 182265822 25 85923704942057238

13 852063558

Fig. 9.10 Ratios χ�/χ�−1 for
the high-temperature
expansion

∑
χ�K

� for the
three-dimensional Ising
model

Susceptibility

The high-temperature expansion of the susceptibility for the three-dimensional Ising
model on a hyper-cubic lattice,

χ(ν)= 1+
∑

�≥1

χ ′
�ν

�, (9.32)

to order 20 was computed earlier on in [10] and then continued to order 25 in [8].
The known coefficients χ ′

� are listed in Table 9.3. The coefficient ratios of the de-
rived series χ(K) =∑

χ�K
� to order 25 are depicted in Fig. 9.10. Similarly as in

two dimensions we fit this series expansion with the expected scaling law for the
susceptibility and find the critical values

Tc ≈ 4.51799J and γ ≈ 1+ 1.05559

4.51799
= 1.23364. (9.33)

These values differ by less than 1 percent from the best known values.
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Fig. 9.11 A spin
configuration is uniquely
determined by the set of sites
with flipped spins marked
as •

9.3 Low-Temperature Expansion of Ising Models

In spin systems at zero temperature only the configuration(s) with minimal energy
is occupied. At low temperature, configurations with higher energies may occur, but
they are exponentially suppressed. Thus in a low-temperature expansion we study
the deviation of the system from the state with minimal energy. The expansion cor-
responds to the weak-coupling expansion in field theory. Indeed, for a continuous
target space we recover the perturbation theory in quantum field theory.

The energy of the Ising-model is minimal if all spins point in the direction of the
magnetic field. Hence, for a positive magnetic field the configuration

ω0 = {sx = 1 | x ∈Λ} (9.34)

has the lowest energy:

E0 =−PJ − V h. (9.35)

The number of nearest neighbor pairs is P = dV . There is only one configuration
with minimal energy, g0 = 1. We reach configurations with higher energies by flip-
ping the spins at certain lattice points. A configuration ω is uniquely characterized
by the set X(ω) ⊂ Λ of lattice points with flipped spins. All spins in the comple-
ment of X are parallel to the magnetic field and all spins in X are anti-parallel. This
means that the number of flipped spins is equal to the volume |X| of X and the
number of nearest-neighbor pairs with anti-parallel spins is equal to the area |∂X|
of its boundary. Figure 9.11 shows a configuration of the Ising model on a square
lattice with |X| = 5 and |∂X| = 16. A configuration ω is almost uniquely charac-
terized by its polygon ∂X (in higher dimensions: polyhedron). The only ambiguity
is that ω and −ω possess the same polygons—the graphical representation does not
distinguish between the inner and outer part of ∂X.
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9.3.1 Free Energy and Magnetization of Two-Dimensional Model

Every lattice point • with spin anti-parallel to the magnetic field contributes 2h to
the energy. Similarly, a nearest-neighbor pair •◦ with opposite spins contributes 2J .
Hence, we have

E(X)=E0 + 2J |X| + 2h|∂X|, (9.36)

and the partition function may be written as

Z = e−βE0
∑

X

e−2βJ |X|−2βJ |∂X| ≡ e−βE0Ξ, (9.37)

where we introduced the function Ξ , which has the low-temperature expansion

Ξ(z, ζ )

∞∑

n,p=0

znupGV (n,p). (9.38)

We assume a positive h such that the fugacity3 satisfies

z= e−2βh < 1. (9.39)

For a ferromagnetic system on a hyper-cubic lattice |∂X| is an even integer and thus
we choose

u= e−4βJ ) 1 (9.40)

as small expansion parameter at low temperatures, such that the order of the series
expansion is the power p = |∂X|/2 of u. The combinatorial factor GV (n,p) is just
the number of subsets X ⊂Λ with volume |X| = n and surface area |∂X| = 2p.

The sets X and X′ corresponding to the configurations ω and −ω have different
statistical weights, namely

X : z|X|u|∂X|/2 and X′ : zV−|X|u|∂X|/2,

such that in the thermodynamic limit the statistical weight of X′ vanishes relative to
that of X. This is why the low-temperature system shows a spontaneous magnetiza-
tion for h �= 0 and infinite volume. However, without magnetic field E(X)=E(X′)
and the configurations ω and −ω have identical weights. Thus, in a finite volume
there is no magnetization for h= 0.

Next we must enumerate the low-temperature diagrams to obtain the combinato-
rial factors GV in Eq. (9.38). Table 9.4 shows all diagrams on the square to order
p = 5 in the expansion parameter u. Observe the close relationship with the high-
temperature expansion in Table 9.1. This relation is a two-dimensional peculiarity
and originates from the self-duality of the two-dimensional Ising model. From

Ξ = 1+ V u2z+ 2V u3z2 + V u4(z4 + 6z3 + (V − 5)z2/2
)

+ V u5(2z6 + 8z5 + 18z4 + 2(V − 8)z3)+ · · · (9.41)

3It is the inverse of the fugacity used in Sect. 8.7.
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Table 9.4 Leading diagrams contributing to the low-temperature expansion of Ξ

p n Diagram Number p n Diagram Number

2 1 V 5 3 2V (V − 8)

3 2 2V 5 4 2V

4 2 1
2V (V − 5) 5 4 8V

4 3 2V 5 4 4V

4 3 4V 5 4 4V

4 4 V 5 5 8V

5 6 2V

follows the low-temperature expansion of the temperature dependent contribution
to the free energy density,

−β�f = logΞ

V
= zu2 + 2z2u3 + (

z4 + 6z3 − 5z2/2
)
u4

+ (
2z6 + 8z5 + 18z4 − 16z3)u5 + · · · . (9.42)

The field dependence of the magnetization m for h > 0 is given by

m=−∂f

∂h
= 1+ 2z

∂

∂z
(β�f )

= 1− 2zu2 − 8z2u3 − (
8z4 + 36z3 − 10z2)u4

− (
24z6 + 80z5 + 144z4 − 96z3)u5 + · · · . (9.43)

Now we switch off the h-field and remain with the spontaneous magnetization

m=
∑

m�u
� = 1− 2u2 − 8u3 − 34u4 − 152u5 − · · · . (9.44)

In the zero-temperature limit all spins are aligned in direction defined by the mag-
netic field before it was switched off. The systems shows a spontaneous magnetiza-
tion. In [18] the finite lattice method has been applied to obtain the low-temperature
series for the partition function, order parameter and susceptibility of the Ising
model on the square lattice. In particular the expansion for the magnetization was
calculated to order 38. Half of the known coefficients are listed in Table 9.5.

Figure 9.12 shows a plot of the spontaneous magnetization m = ∑
m�u

� with
the coefficients in Table 9.5. The magnetization vanishes for values u larger than
the critical value of uc .
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Table 9.5 Coefficients m�

and ratios of coefficients for
the 2d Ising model [18]

� m� m�/m�−1 � m� m�/m�−1

0 1 10 −454378 5.16056

1 0 11 −2373048 5.22263

2 −2 12 −12515634 5.27408

3 −8 4.00000 13 −66551016 5.31743

4 −34 4.25000 14 −356345666 5.35447

5 −152 4.47059 15 −1919453984 5.38649

6 −714 4.69737 16 −10392792766 5.41445

7 −3472 4.86275 17 −56527200992 5.46093

8 −17318 4.98790 18 −308691183938 5.48046

9 −88048 5.08419 19 −1691769619240

Fig. 9.12 The magnetization
as a function of u= e−4βJ in
the low-temperature
expansion

Extrapolation to the Critical Point

The low-temperature series for m has only negative coefficients m� except for m0.
Hence, if the series has a finite radius of convergence, then a singularity of m(u) lies
on the positive real axis at some value uc . As earlier on we fit the low-temperature
expansion to the expected scaling,

m=
∑

m�u
� ∼

(
1− u

uc

)β

, (9.45)

and analyze the series with the help of the ratio test,

m�

m�−1
= 1

uc
− 1+ β

uc

1

�
. (9.46)

Figure 9.13 shows the ratios of successive coefficients for the orders given in
[18] and the corresponding linear fit for � ≥ 4. The slope of the fitting func-
tion is approximately −6.80717 and the intersection with the ordinate is given by
1/uc ≈ 5.837266. This yields the estimates

Tc = 2.26985J and β = 0.13056 (9.47)
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Fig. 9.13 Extrapolation for
the determination of the
critical temperature and the
critical exponent β in the
low-temperature
approximation

for the critical temperature and critical exponent. This critical temperature is very
close to the exact value in (9.23) and the exponent is near the exact value β = 1/8.

9.3.2 Three-Dimensional Model

While the high-temperature series are well-behaved the situation at low tempera-
tures is less satisfactory, in particular above two dimensions. With finite lattice meth-
ods it was possible to calculate low-temperature expansions on the simple-cubic
lattice in powers of the small parameter u = e−4J/T . For example, the magnetiza-
tion was calculated to order 20 in [19, 20] and later on to order 26 in [21]. Using a
modification of the shadow-lattice techniques Vohwinkel obtained low-temperature
series for the free energy, magnetization and susceptibility [22]. The magnetization
was calculated to order 32 and the corresponding coefficients m� are listed in Ta-
ble 9.6. Note that in three dimensions the coefficients have alternating signs and we
expect the first singularity of m(u) on the negative real axis. The ratio test shows
that the first singularity for the series occurs near u≈−0.3. This unphysical singu-
larity makes it difficult to apply the ratio method and thus we use Padé approximants
to analyze the low-temperature series. The [p,q]f Padé approximant of a function
f (u) is the ratio of a polynomial p(u) of degree p and a polynomial q(u) of degree
q such that the series expansion of p(u)/q(u) agrees with the series expansion of
f (u) through order p + q [23]. Figure 9.14 shows the high-temperature expansion
of the magnetization which becomes singular at u ≈ ±0.3 together with its [5,5]
Padé approximant.

To extract the critical point uc and the critical exponent β we analyze the Padé
approximants to the low-temperature series of f (u)=m(u)/m′(u), which near the
critical point should behave like (u − uc)/β , such that the critical coupling uc is
identified with the first zero of the Padé approximant on the positive real axis, and
the inverse critical exponent is equal to the slope at the critical value uc . The critical
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Table 9.6 Coefficients m�

and ratios of coefficients for
the 3d Ising model [22]

� m� � m�

0 1 18 30371124

3 −2 19 −101585544

4 0 20 338095596

5 −12 21 −1133491188

6 14 22 3794908752

7 −90 23 −12758932158

8 192 24 42903505030

9 −792 25 −144655483440

10 2148 26 488092130664

11 −7716 27 −1650000819068

12 2326 28 5583090702798

13 −79512 29 −18918470423736

14 252054 30 64167341172984

15 −846628 31 −217893807812346

16 2753520 32 740578734923544

17 −9205800

Table 9.7 Critical coupling uc and critical exponent β from various Padé approximants

[r, s] = [3,3] [4,4] [5,5] [6,6] [7,7] Averages

uc = 0.4177 0.4033 0.4124 0.4031 0.4098 0.4093

β = 0.3204 0.2595 0.3063 0.2586 0.2848 0.2859

Fig. 9.14 Plot of the
high-temperature series of
order 32 and its [5,5] Padé
approximant

values for several Padé approximants are listed in Table 9.7. The prediction for uc
of the approximant [5,5] comes closest to the precise number uc = 0.41205 from
simulations and for this best fit we read off a critical exponent β = 0.3063.
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Table 9.8 Critical parameters of Ising model on the square from Padé approximants

[r, s] = [2,2] [3,3] [4,4] [5,5] [6,6] Exact

uc = 0.166666 0.171573 0.171573 0.171573 0.171573 0.171573 . . .

Tc/J = 2.232443 2.269186 2.269185 2.269185 2.269185 2.269185 . . .

β = 0.111111 0.125000 0.125000 0.125000 0.125000 0.125

9.3.3 Improved Series Studies for Ising-Type Models

Typically the Padé approximant method yields more accurate results for the crit-
ical parameters as the ratio method. For example, for the 2d-Ising model on the
square lattice the lowest Padé approximant to m(u)/m′(u), where m(u)=∑

m�u
�

is the low-temperature expansion up order 38, yields the critical parameters listed
in Table 9.8. Already the fourth-order approximant agrees with the exact result in
all digits given in the table. To achieve a further improvement in the precision of
the estimates of the critical parameters from the analysis of extended high- or low-
temperature series one should properly allow for the expected non-analytic correc-
tion to the leading power law behavior or thermodynamic quantities near a critical
point. A singular quantity is expected to behave, in the vicinity of the critical point
βc as

g(β)∼Aγ |t |λ
(
1+ aχ |t |λ1 + a′χ |t |2λ1 + · · · + eχ t + e′χ t2 + · · ·) (9.48)

when t = 1 − β/βc → 0, see [24]. The critical exponent λ and the leading conflu-
ent correction exponents λ1 are universal. The established ratio extrapolation and
Padé approximant methods are generally inadequate to solve the numerical problem
of extracting βc , the critical exponent and the leading confluent exponent. Instead
one may use the differential approximants method put forward in [25]. With such
improvements it is possible to find rather precise values for critical exponents for
a large class of spin models in various dimensions, for a detailed discussion see
the textbook [3]. In Table 9.9 we compiled results from high-temperature expan-
sions for the Ising model on a simple-cubic lattice. From scaling relations between
critical exponents one finds β ≈ 0.3265. In [29] the low-temperature series for the
partition function, order parameter and susceptibility of the q-state Potts model on
the square lattice to high order in u for q = 2,3,4, . . . ,10 are given. The on-line
library [8] contains high-temperature expansions of basic observables in two- and
three-dimensional Ising models with spins 1/2,1, . . . ,5,∞. Beside the critical ex-
ponents there are further universal quantities, namely the universal amplitude ratios.
Critical exponents and universal amplitude ratios for many interesting spin models
are compiled in the review [17].

9.4 High-Temperature Expansions of O(N) Sigma Models

For N > 1 the high-temperature series for the widely studied O(N) sigma model
with energy function (6.18) are significantly less well known than those for the
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Table 9.9 Critical parameters for 3d Ising model from high-temperature expansions

βc γ ν η α From

0.22165459(10) 1.2373(2) 0.63012(16) 0.03639(15) [26]

0.2216545(1) 1.2369(2) 0.6298(3) 0.1035(5) [27]

0.221655(2) 1.2371(1) 0.6299(2) 0.0360(8) [28]

Ising model. For N = 0 (the self-avoiding walk model) the susceptibility has been
calculated to order β23 on the simple-cubic lattice in [30]. With the linked cluster
expansion technique the high-temperature series has been extended to order β23 for
the non-linear models with N ≤ 12 in [31, 32].

Actually, the linked cluster expansion technique can be adapted to produce ex-
pansions for the general class of models with partition functions

Z =
∫

dμ(ω)e−βH+∑
hxsx , where H =−

∑

〈x,y〉
sxsy, (9.49)

contains nearest-neighbor interactions between the spins sx ∈ R
N . The hx ∈ R

N

represent an external field and dμ is the product of O(N)-invariant single-spin mea-
sures,

dμ(ω)=
∏

x

dμ(sx), dμ(Rs)= dμ(s). (9.50)

We absorbed the nearest-neighbor coupling J in the inverse temperature β . For
small β and without external field we obtain the expansion

Z = 1+
∞∑

�=1

β2�

(2�)!
∫

dμ(ω)H 2�, (9.51)

with only even powers of H , since dμ is invariant under rotations of the individual
spins. For the product measure dμ the averages on the right hand side are expressed
in terms of moments of the single-spin distribution dμ(s) and these moments are
generated by z(h) = ∫

dμ(s) exp(hs). For O(N)-invariant systems the generating
function depends only on the modulus of h such that for a vanishing field the mo-
ments are totally symmetric O(N) invariant tensors, e.g.

∫
dμ(s)sasb = C2δab ≡ C2Cab,

∫
dμ(s)sasbscsd = C4(δabδcd + δacδbd + δadδbc)≡ C4Cabcd .

(9.52)

The totally symmetric tensor

Ca1...a2� = δa1a2δa3a4 · · · δa2k−1a2� + · · · (9.53)

contains (2�− 1)!! terms corresponding to the possible Wick-contractions. For the
Gaussian model with normalized single-spin distribution

dμ(s)=
(
α

2π

)N/2

e−αs2/2, s ∈R
N (9.54)
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the coefficients of the invariant tensors are

C2� = 1

α�
. (9.55)

For the non-linear O(N) sigma model with single spins randomly distributed on the
unit-sphere the normalized single-spin measure is proportional to δ(s2−1)dNs. The
generating function in (7.123), normalized to z(0)= 1, has the Taylor expansion

z(h)=
∞∑

�=0

Γ (N/2)

Γ (�+N/2)

1

�!
(
h2

4

)�

, (9.56)

from which one extracts the coefficients

C2� = Γ (N/2)

2�Γ (N/2+ �)
= 1

N(N + 2) · · · (N + 2�− 2)
. (9.57)

9.4.1 Expansions of Partition Function and Free Energy

The term of order β2� in (9.51) contains sums of products of 2� spins. Thus the
high-temperature expansion involves products of links sxsy and because for each
site each sx must appear an even number of times, one generates closed polygons.
Since the spins also carry an internal index we must attach an internal index to each
link. A link may now be chosen several times. More precisely, a link connecting
two nearest neighbors �-times represents the average of (sxsy)�, where x, y are the
endpoints of the link. If 2� links with indices a1, . . . , a2� end at a given site (a vertex
of the graph), we assign the factor C2�Ca1...a2� to the vertex. In addition sxsy = sax s

a
y

involves a contraction over internal indices and hence we must finally contract all
internal indices occurring in the graph. For example, to (sxsy)

2(sysu)
2 we assign a

graph with two lines from x to its neighbor y and two lines from y to its neighbor u.
Since indices of nearest-neighbor pairs are contracted the average yields

CabCabcdCcd =
(
N2 + 2N

)
C 2

2 C4.

Below we need the following contractions of invariant tensors:

CabCab =N,

CabcdCabcd = 3
(
N2 + 2N

)
,

Cabcdef Cabcdef = 15
(
N3 + 6N2 + 8N

)
,

CabcdCbcde = 3(N + 2)Cae,

CabcdCcd = (N + 2)Cab,

Cabcdef Cef = (N + 4)Cabcd ,

Cabcdef Ccdef = 3(N + 2)(N + 4)Cab,

CabCabcdef Ccdef = 3N(N + 2)(N + 4).

(9.58)

Now we are ready to calculate the partition functions of O(N) models to or-
der β6. The emerging diagrammatic expansion is also very useful to obtain the high-
temperature expansions for other objects of interest, for example the susceptibility.
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Fig. 9.15 Diagram contributing in order β4

Order β2

The second order contribution to Z is proportional to 〈H 2〉. Setting σb = sxsy for a
bond b with endpoints x, y we obtain

〈
H 2〉=

∑

b

〈
σ 2
b

〉=
∑

c

CacCacC
2
2 = dVNC 2

2 , (9.59)

where dV comes from the sum over all links and is the number of associated graphs

on the lattice.

Order β4

The function H 4 is a sum of all terms σb1σb2σb3σb4 associated to four bonds. Only
graphs with even vertices contribute and these graphs are depicted in Fig. 9.15. The
number of graphs of a given type is listed below the graph. In the contribution

〈
H 4〉=

∑〈
σ 4
b

〉+ 6
∑〈

σ 2
b1
σ 2
b2

〉+ 24
∑

〈σb1σb2σb3σb4〉, (9.60)

one only sums over distinct links. All terms in the second sum belonging to discon-
nected links are represented by the disconnected graph (d) Fig. 9.15. The four links
in the last sum in (9.60) define the loop graph (c). Thus every term of 〈H 4〉 is rep-
resented by a graph. The number related to a graph is the product of its multiplicity
and the combinatorial factor in (9.60), and both are given in Fig. 9.15. Therefore we
find

〈
H 4〉= dVCabcdCabcdC

2
4

+ 6dV (2d − 1)CabcdCabCcdC4C
2
2

+ 12dV (d − 1)CabCbcCcdCdaC
4
2

+ 3dV (dV − 4d + 1)CabCabCcdCcdC
4
2 . (9.61)

Contracting the invariant tensors according to (9.58) leads to
〈
H 4〉= 3dVN

(
(N + 2)C2

4 + 2(2d − 1)(N + 2)C4C
2
2

+ 4(d − 1)C 4
2 + (dV − 4d + 1)NC 4

2

)
. (9.62)
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Order β6

The function H 6 is a sum of all terms σb1σb2σb3σb4σb5σb6 associated to six links.
The following terms contribute to the partition function:

〈
H 6〉=

∑〈
σ 6
b

〉+ 15
∑〈

σ 4
b1
σ 2
b2

〉+ 90
∑〈

σ 2
b1
σ 2
b2
σ 2
b3

〉

+ 360
∑〈

σ 2
b1
σb2σb3σb4σb5

〉+ 120
∑〈

σ 3
b1
σb2σb3σb4

〉

+ 720
∑

〈σb1σb2σb3σb4σb5σb6〉. (9.63)

The first and last sums are represented by the connected diagrams a,f and f ′ in
Fig. 9.16. The remaining sums are represented by connected and disconnected dia-
grams. The disconnected ones are depicted in Fig. 9.17. The analytical expression
for 〈H 6〉 in terms of the invariant tensors, coefficients C� and dimension of space d
is now easily found

〈
H 6〉= dVCabcdef CabcdefC 2

6

+ 30dV (2d − 1)Cabcdef CabcdCefC6C4C2

+ 90dV (2d − 1)2CabCabcdCcdef CefC 2
4 C 2

2

+ 60dV (2d − 1)(d − 1)CabCabcdef CcdCefC6C
3
2

+ 1440dV (d − 1)2CabCabcdCceCef CfdC4C
4
2

+ 240dV (d − 1)CabcdCbcdeCef Cf aC
2
4 C 2

2

+ 720dV (d − 1)(2d − 3)CabCbcCcdCdeCef CfaC
6
2

+ 480dV (d − 1)(d − 2)CabCbcCcdCdeCef CfaC
6
2

+ 15dV (dV + 1− 4d)CabcdCabcdCef CefC 2
4 C 2

2

+ 90dV (2d − 1)(dV + 2− 6d)CabCabcdCcdCef CefC4C
4
2

+ 180dV (d − 1)(dV + 4− 8d)CabCbcCcdCdaCef CefC 6
2

+ 15dV
(
d2(V 2 − 12V + 40

)+ 3dV − 24d + 4
)
(CabCab)

3C 6
2 .

After contracting the invariant tensors this becomes
〈
H 6〉= 15dV n(N + 2)(N + 4)C 2

6

+ 90dV (2d − 1)N(N + 2)(N + 4)C6C4C2

+ 90dV (2d − 1)2N(N + 2)2C 2
4 C 2

2

+ 60dV (2d − 1)(d − 1)N(N + 2)(N + 4)C6C
3
2

+ 1440dV (d − 1)2N(N + 2)C4C
4
2

+ 720dV (d − 1)N(N + 2)C 2
4 C 2

2

+ 720dV (d − 1)(2d − 3)NC 6
2

+ 480dV (d − 1)(d − 2)NC 6
2

+ 45dV (dV + 1− 4d)N2(N + 2)C 2
4 C 2

2
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Fig. 9.16 All connected diagrams contributing to 〈H 6〉. The numbers below the graphs count the
number of diagrams. The combinatorial factors in (9.63) are also listed

Fig. 9.17 Disconnected diagrams contributing to 〈H 6〉. The numbers below the graphs count the
number of diagrams

+ 90dV (2d − 1)(dV + 2− 6d)N2(N + 2)C4C
4
2

+ 180dV (d − 1)(dV + 4− 8d)N2C 6
2

+ 15dV
(
d2(V 2 − 12V + 40

)+ 3dV − 24d + 4
)
N3C 6

2 .

The disconnected graphs cancel in the free energy density
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−βVfβ = β2

2

〈
H 2〉+ β4

4!
(〈
H 4〉− 3

〈
H 2〉2)

+ β6

6!
(〈
H 6〉− 15

〈
H 4〉〈H 2〉+ 30

〈
H 2〉3)+ · · · .

In particular for the non-linear O(N) sigma model in d dimensions we find

−βf (β)= dβ2

2N
+ dβ4

4N3

2dN + 4d − 3N − 4

N + 2

+ dβ6

3N5

(
8d2 − 3d(9N2 + 50N + 56)− 2(10N2 + 51N + 52)

(N + 2)(N + 4)

)
,

(9.64)

and for N = 1 we recover the leading order contributions to the Ising model free
energy density in dimension d . The internal energy density for the models in two
and three dimensions have the expansions

ud=2 = 2β

N
+ 2β3

N3

N + 4

N + 2
− 8β5

N5

N2 + 3N − 12

(N + 2)(N + 4)
+ · · · ,

ud=3 = 3β

N
+ 3β3

N3

3N + 8

N + 2
β4 + 6β5

N5

11N2 + 84N + 176

(N + 2)(N + 4)
+ · · · .

(9.65)

When one tries to calculate higher order contributions the way we did then the pro-
cess becomes very laborious after the first few terms in the high-temperature expan-
sion. One runs into the problem of polygon counting on the lattice. Such polygons
can be generated by an n-step random walk on the lattice. The major difficulty is to
ensure that no diagrams have been overlooked at each stage.

It is advantageous to consider intrinsic quantities, for example the free energy
density or the susceptibility, to which only connected diagrams contribute. The
linked cluster expansion is a systematic method to construct all connected diagrams
[31]. Each term in the expansion is represented by a graph consisting of vertices
v ∈ V and lines joining them. There are internal lines � ∈L and external lines (the
graphs belonging to the free energy have no external lines). Lines with only one ter-
minal point are external. We denote the number of external lines attached to a vertex
v by E(v). All lines � have an initial point i(�) and a final point f (�) and the two
endpoints are different. For the O(N)-models the order of all vertices, i.e. the total
number of lines (internal and external) ending at v, must be even.

We associate four numbers to each graph G ∈ G . These are the (topological)
symmetry number S(G), the lattice embedding number I (G), the O(N) symmetry
factor C(G) and the weight W̊ (G). First one tabulates all graphs of a particular
topological class which contribute to a given order. Figure 9.16 contains the six
classes:

{a}, {b}, {
c, c′

}
, {d}, {e}, and

{
f,f ′}.
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Table 9.10 Ratios r� = α2�/α2�−2 for various O(N) models in three dimensions

� 2 3 4 5 6

N = 2 2.62500 3.84921 3.45242 3.86091 4.03943

N = 3 1.13333 1.64021 1.43292 1.61356 1.69459

N = 4 0.62500 0.89583 0.76566 0.86438 0.90978

N = 5 0.394286 0.561031 0.470829 0.53166 0.56018

Table 9.11 Critical
temperature for O(N) models
in three dimensions

N 2 3 4 5 6

βc 0.45460 0.69507 0.94265 1.19509 1.45209

Fig. 9.18 The ratios of
coefficients r� = α2�/α2�−2 in
the high-temperature
expansion of the specific heat
for the O(3) and O(4)
models in three dimensions

In [31] the following linked cluster expansion for the coefficient in the high-T ex-
pansion of the susceptibility is given:

χ2k =
∑

G∈G2k

(2κ)LI (G)C(G)W̊ (G)
E!

SE(G)
, (9.66)

where the sum extends over all topologically inequivalent graphs with k internal
lines. The symmetry number S(G) is given by the incidence matrix associated to
the graph. Although we shall not go further into algorithmic considerations we shall
use the results obtained by the linked cluster expansion in combination with efficient
computer programs. We shall only consider simple hyper-cubic lattices.

For example, Butera and Comi computed through order β21 the high temperature
expansions for the inner energies of non-linear O(N) models on hyper-cubic lattices
for arbitrary N [33]. For the simple ratio test we calculated the ratios of coefficients
in the expansion of the specific heat. The ratios for N = 2,3,4 and 5 are listed in
Table 9.10. For large � these ratios depend linearly on 1/� and this linear dependence
is seen in Fig. 9.18. With the linear extrapolation (9.27) one obtains reasonable
accurate values for the critical temperatures, given in Table 9.11. Unfortunately the
series for the inner energy are too short to extract reliable values for the critical
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Table 9.12 Critical temperatures, susceptibility exponent and heat capacity exponent of O(N)

models on simple-cubic lattices from high-temperature expansions (hte). Also listed are the ex-
ponents obtained from strong-coupling expansions (sc), from six-loop approximations combined
with the Padé–Borel resummation technique (6-loop), from renormalization-group equation with
full-momentum dependence of correlation function (rge) and from lattice simulations (mc)

N 1 2 3 4 6 8 10 12 From

βhte,c 0.2217 0.4542 0.6930 0.9359 1.4286 1.9263 2.4267 2.929 [32]

βmf,c 0.1667 0.3333 0.5000 0.6667 1.0000 1.3333 1.6667 2.000 MF

γhte 1.244 1.327 1.404 1.474 1.582 1.656 1.712 1.759 [32]

γsc 1.241 1.318 1.387 1.451 1.558 1.638 1.275 1.763 [34]

γ6-loop 1.239 1.315 1.3386 1.449 1.556 1.637 1.697 1.743 [35]

νhte 0.634 0.677 0.715 0.750 0.804 0.840 0.867 0.889 [32]

νsc 0.630 0.670 0.705 0.737 0.790 0.829 0.866 0.890 [34]

ν6-loop 0.631 0.670 0.706 0.738 0.790 0.830 0.859 0.881 [35]

νrge 0.632 0.674 0.715 0.754 0.889 [36]

νmc 0.630 0.672 0.711 0.749 0.818 [37–39]

αhte 0.098 −0.031 −0.145 −0.250 −0.412 −0.520 −0.601 −0.667

αsc 0.107 −0.010 −0.117 −0.213 −0.370 −0.489 −0.576 −0.643 [34]

αmc 0.1101 −0.1336 [37–39]

exponent α. In [32] the high-temperature expansions for the susceptibility and the
second correlation length

μ2(β)=
∑

x

x2〈s0sx〉 =
∑

s�(N)β� (9.67)

have been extended to order β21 with the help of the (vertex renormalized) linked
cluster expansion [31]. The corresponding estimates for the critical point and crit-
ical exponents γ and ν are listed in Table 9.12. The critical exponent αhte is cal-
culated with the hyperscaling relation. Also listed in the table are the critical expo-
nents from strong-coupling expansions and six-loop approximations, improved by
the Padé–Borel resummation technique. A comparison of the numbers may indicate
how uncertain they are. For small N there are precise data from lattice simulations
or other methods, see the references on p. 202.

9.5 Polymers and Self-Avoiding Walks

Polymers are long molecules composed of many, say n, monomers. When the inter-
action between the monomers is negligible, the geometric configuration is similar
to a Brownian chain of n successive independent steps, made at random. This is the
analogue of a random walk on a lattice. If the monomers are interacting, the problem
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is more difficult. If they repel then the chain is more extended than the Brownian
chain. The simplest realization for a repulsion is to imagine a random walk on a
lattice in which it is forbidden to visit again a previously visited site: this is called
a self-avoiding walk. The resulting model is non-Markovian since the nth step de-
pends on the whole past of the chain. It is expected that the typical size of the chain
will be larger as a function of n than that of the Brownian chain, because of this
geometric repulsion.

It was shown by P. de Gennes that the problem of self-avoiding walks on the
lattice may be mapped onto a singular N = 0 limit of the O(N) model. To perform
this limit we choose a different normalization for the spins, namely

sxsx =N, for all x ∈Λ. (9.68)

As a consequence the coefficients in (9.57) are rescaled,

C2� = N�

N(N + 2) · · · (N + �k− 2)
, (9.69)

and have the scaling limit

lim
N→0

C2� =
{

1, for �= 1,
0, for � > 1.

(9.70)

In the previously considered expectation values 〈H 2�〉 all totally symmetric O(N)-
invariant tensors are contracted. But a contraction of all indices yield at least one
power of N . Actually the contraction of all indices in the terms belonging to discon-
nected graphs yield at least two powers of N . This means that all expectation values
〈H 2�〉 vanish and this gives the trivial result Z = 1. However, let us go a bit further
and consider the high-temperature expansion of the spin–spin correlation function

G1,1(x)= 〈
s1

0s
1
x

〉
N→0 = lim

N→0

1

Z

∞∑

�=0

β�

�!
∫

dμ(ω)s1
0s

1
xH

�, (9.71)

where x is any site on the lattice. In the limit N → 0 all terms containing coefficients
C4,C6,C8, . . . vanish. This means that graphs with vertices that have more than two
lines attached, or equivalently with several lines between nearest neighbors, do not
contribute. All graphs must be connected since disconnected graphs contain at least
one full contraction of indices and hence are suppressed by at least one power of N .
We conclude that only non-intersecting connected graphs contribute which connect
the lattice points 0 and x. Two examples are shown in Fig. 9.19. Since 〈sasb〉 ∝ δab
the internal index is preserved along the line connecting 0 and x and hence all spins
on the line have the same index as the spins at the endpoints. The contribution of a
graph is equal to �!C �

2 , where 0 and x are connected by a line with length �. Thus
we find

G1,1(x)=
∑

�

c�(x)β
�, (9.72)

where c�(x) is the number of self-avoiding random walks from 0 → x with length �.
Averaging over x yields the susceptibility
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Fig. 9.19 Only graphs
contribute in which the two
points 0 and x are connected
by a non-intersecting line on
the lattice

χ =
∑

�

c�β
�, (9.73)

with coefficient c� counting the number of random walk of length � beginning at
the origin. The singularity of χ at the critical temperature is related to the behavior
of the coefficients c� for large �. With the help of Stirlings approximation for large
factorials one estimates the coefficients in the expansion (9.20) and finds

χ ∼
√

γ

2π

(
e

γ

)γ ∑

�

�γ−1
(
β

βc

)�

. (9.74)

Another quantity of interest is the mean square displacement over all �-step self-
avoiding walks

R2
� =

1

c�

∑

x

x2c�(x). (9.75)

Its root is the average size of a walk consisting of � steps. If the 2-point correlation
function of the N → 0 vector model falls off exponentially with a correlation length
ξ which diverges near βc as (βc − β)−ν , this is compatible with (9.75) if, for large
�, R� ∼ �ν . This provides a surprising connection between the problem of self-
avoiding walks and properties of N -vector models.

In two dimensions the exact critical temperature on a honeycomb lattice is
known, β−2

c = 2+√
2, and the critical exponents are [40],

γ = 43

32
and ν = 3

4
. (9.76)

The computation of c� for not too small � is a formidable computational problem
since, according to (9.74), the number of self-avoiding random walks grows as

c� ∼ �γ−1

β�c
. (9.77)
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Table 9.13 Critical
temperatures for the
self-avoiding random walks
for 4 ≤ d ≤ 8 [41]

d 4 5 6 7 8

βc 0.147622 0.1131 0.09193 0.07750 0.06703

In three dimensions the critical exponents were calculated with a self-avoiding walk
enumeration technique in [41]. From walks with up to 30 steps (for example, c30 =
270569905525454674614) one extracts

βc ≈ 0.2134907, γ ≈ 1.1567, and ν ≈ 0.5875, (9.78)

and from self-avoiding walks with 24 or less steps in d ≥ 4 dimensions one can es-
timate the non-universal critical temperatures, see Table 9.13. An earlier conjecture
for the exponent ν is due to the chemist Flory. The Flory exponents are

νFlory =
{

3/(2+ d), for d ≤ 4,
1/2, for d > 4.

(9.79)

This value is correct in d = 2 and d ≥ 4 (apart from logarithmic corrections in four
dimensions) and comes very close for d = 3, where ν = 0.5888. We expect that in
d ≥ 4 dimensions the second critical exponent is γ = 1.

9.6 Problems

9.1 (High-temperature expansion for the 3d-Ising model) Examine the diagrams for
the high-temperature expansion of the partition function of the three-dimensional
Ising model with Hamiltonian

H =−J
∑

〈xy〉
sxsy, sx, sy ∈ {−1,1}.

The number of nearest-neighbor pairs is equal to P = 3V . You will find the follow-
ing series expansion:

Z = (coshK)3V 2V
(

1+ 3V v4 + 22V v6 + 1

2

{
9V (V − 1)+ 375V

}
v8 + · · ·

)

with v = tanh(βJ ). Furthermore, determine the series expansion of e−βf (with f

denoting the free energy density) to order v8.

9.2 (Correlation functions of O(N) models) Compute, up to order β4, the correla-
tion function 〈s(x)s(0)〉 of the three-dimensional O(N) models at high temperature.
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Chapter 10
Peierls Argument and Duality Transformations

In this chapter we shall present exact results which apply to many lattice models
of interest. Even before the exact solution of the two-dimensional Ising model by
ONSAGER, PEIERLS [1] proved the existence of two ordered phases at low tem-
peratures. His argument can be extended to many other models with discrete target
spaces. Here we present Peierls’ argument for the two- and three-dimensional Ising
models.

We continue with the duality transformations which relate two lattice models.
A duality transformation maps a system at weak coupling or low temperature into
a system at strong coupling or high temperature and thus leads to new insights into
the strong-coupling regime of lattice models. Duality transformations exist for many
Abelian theories even in higher dimensions. In case the two lattice models are iden-
tical up to a rescaling of the couplings we call the transformation self-dual. The
two-dimensional Ising model without magnetic field is self-dual [2, 3]. For non-
self-dual models the dual theory maybe considerably more complex than the orig-
inal one. For example the dual of the three-dimensional Ising model is a Z2-gauge
theory on the dual lattice [4]. In this chapter we shall study lattice systems for which
the target spaces form Abelian groups. Unfortunately, it is difficult or impossible to
find duality transformations for non-Abelian models. A detailed account of duality
transformations in field theories and statistical mechanics is given in [5–7].

10.1 Peierls’ Argument

First we present the beautiful reasoning due to Peierls to prove that at sufficient low
temperatures the two-dimensional Ising model is in an ordered phase. The proof can
be extended to other discrete spin models in two or more dimensions and this will
be discussed later in this section.

To begin with, we choose fixed boundary conditions and set all Ising spins at the
boundary to one. The choice of non-periodic boundary conditions will be important

A. Wipf, Statistical Approach to Quantum Field Theory, Lecture Notes in Physics 864,
DOI 10.1007/978-3-642-33105-3_10, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 10.1 The Peierls
contours (loops) enclose
regions on the lattice where
the spins are −1. With the +
boundary conditions the +
spins are outside the contours
and the − spins are inside

at a later stage. Every spin configuration ω is uniquely characterized by a set of
non-intersecting loops on the dual lattice,

Γω = {γ1, γ2, . . . , γn},
where every loop, called Peierls contour, encloses an island with spins down, see
Fig. 10.1. If |γi | denotes the length of γi then a configuration ω has exactly

∑
i |γi |

nearest-neighbor pairs with anti-parallel spins. Hence its energy is given by

HΛ(ω)=−J#(pairs with equal spins)

+ J#(pairs with unequal spins)

=−JP + 2J
∑

γi∈Γω
|γi |,

where P is the total number of nearest-neighbor pairs. The constant contribution
cancels in expectation values such that we obtain the following probability for the
occurrence of a configuration ω (recall that K = βJ ):

P [ω] = 1

Z
exp

(
−2K

∑

γi∈Γω
|γi |

)
, Z =

∑

Γ

exp

(
−2K

∑

γi∈Γ
|γi |

)
. (10.1)

Lemma 10.1 (Peierls’ inequality) The probability for the occurrence of a contour
γ may be bounded from above as follows:

P [γ ] ≡ P
[{ω : γ ∈ Γω}

]≤ e−2K|γ |. (10.2)

Proof The left hand side may be written as

1

Z

∑

ω:γ∈Γω
exp

(
−2K

∑

γ ′∈Γω

∣∣γ ′
∣∣
)
= 1

Z
e−2K|γ | ∑

w:γ∈Γω
exp

(
−2K

∑

γ ′∈Γω\γ

∣∣γ ′
∣∣
)

= 1

Z
e−2K|γ | ∑

ω:γ∈ΓPγ ω
exp

(
−2K

∑

γ ′∈Γω

∣∣γ ′
∣∣
)
,
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Fig. 10.2 Estimation of the
number of loops which
enclose a fixed lattice point

where we have used the fact that if we remove γ from a contour gas Γω with γ ∈ Γω ,
we obtain the contour gas of the configuration Pγω, where Pγω originates from ω

by a flip of all spins enclosed by γ . Since the last term represents a summation over
a subset of all configurations, we have proved the inequality (10.2). �

The inequality shows that the probability for the occurrence of a long contour
decreases exponentially with its length, independent of the lattice size. We now use
this inequality to estimate the probability of spin configurations with sx =−1. Here
it will be important to recall that we imposed fixed boundary conditions with all
spins +1 at the boundary. Note that any x with sx =−1 is enclosed by at least one
contour and the number of horizontal and vertical edges of a contour is always even.
Thus we have |γ | ∈ {4,6,8, . . .}.

Lemma 10.2 The number A(n) of contours of length n which enclose a certain
point x ∈Λ is bounded from above according to

A(n)≤ n− 2

2
3n−1.

Proof First of all, we notice that the ray y(λ)= x + λe1, λ > 0, emanating from x,
intersects a contour at least once. This is sketched in Fig. 10.2. Now let us consider
the vertical link of a given contour γx enclosing x which intersects the ray at a max-
imal distance λmay from x. The possible values of λmax are 1/2,3/2, . . . , (n− 3)/2,
i.e. we have (n− 2)/2 possible values of λmax. The largest value is attained for the
rectangle of height 1 and length (n− 2)/2. If we now move along the contour then
each of the remaining n− 1 links may “choose” between three possible directions
with respect to its predecessor: left, right or straight on. This gives a multiplicative
factor of 3n−1 and this yields the upper bound for A(n). �
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Theorem 10.1 If K > 0.7, then there exist two different Gibbs measures P+
β ,P−

β

for the Ising model on the infinite square lattice, where

〈sx〉P+
β
> 0 and 〈sx〉P−

β
< 0 (10.3)

holds for all sites x.

Thus we observe spontaneous magnetization at low temperatures. We know al-
ready from the exact solution or the duality arguments that spontaneous magnetiza-
tion occurs for K >Kc with Kc = 1

2 log(1+√
2)≈ 0.44.

Proof Firstly, we estimate the probability of the occurrence of sx = −1 when the
spins on the boundary are +1. If {γx} is the set of contours enclosing x then

P+[sx =−1] ≤
∑

γx

P [γ ] ≤
∑

n∈N
A(n)e−2Kn =

∑

m∈N
A(2m)e−4Km

≤
∑

m∈N
(m− 1)32m−1e−4Km = 1

3

∑

m∈N
(m− 1)e−αm

= 1

3
e−α

∑

n∈N0

ne−nα = 1

3
e−α

(
− ∂

∂α

∑

n∈N0

e−nα
)
= 1

3

y2

(1− y)2
,

wherein we assumed that the constant α ≡ 4K − 2 log 3 is positive and in the last
step we defined y = e−α ∈ (0,1). Next we determine the y-values for which the
probability is less than 1/2. The upper bound 1/2 is attained for

2y2 = 3(1− y)2 or y = yp ≡ 3±√
6.

We conclude that the probability for any given spin being −1 is less than 1/2 for
y < yp or equivalently for α > − log(3 −√

6). With +1-boundary conditions we
thus observe spontaneous magnetization, if

βJ >Kp, Kp = 1

2
log 3− 1

4
log

(
3−√

6
)≈ 0.69853. (10.4)

The estimate holds for all sites x and lattice sizes. At low temperature the system is
therefore characterized by a positive magnetization 〈sx〉+ > 0 in the thermodynamic
limit. On the other hand, setting all Ising spins at the boundary to −1 we would find
a probability P−[sx = 1] < 1/2 for K > Kp for all lattice sizes. This implies a
negative magnetization in the thermodynamic limit. Different boundary conditions
force the statistical system into different phases in the thermodynamic limit. Hence
there exist at least two different equilibrium states at low temperature. �

10.1.1 Extension to Higher Dimensions

To which other spin systems can one extend Peierls’ argument? The argument be-
gins with a minimal energy configuration ω0 compatible with the imposed bound-
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ary conditions. For the Ising model with +1-boundary conditions this is the ordered
configuration

ω0 = {sx = 1|x ∈Λ}. (10.5)

Then one studies configurations with higher energies which are exponentially sup-
pressed. Although the excited configurations carry lots of entropy—there are many
of them—the energy suppression wins at sufficiently low temperatures. To general-
ize this type of energy-entropy arguments one needs a generalization of the Peierls’
contours for other lattices and more general target spaces. Actually the Peierls ar-
gument can be extended to spin models with a discrete Abelian group G as target
space. Here we focus on the Ising model in higher dimensions with target space
Z2 for which the closed contours are borderless hypersurfaces on the dual lattice.
A contour thereby separates the interior from its complement, the exterior.

There exists a one-to-one relation between configurations ω with +1-boundary
conditions and sets of non-intersection contours. We find the following estimate for
the number of counters of a given size:

Lemma 10.3 In d dimensions the number A(n) of different Peierls’ contours of size
n fulfills the inequality

exp

(
n− 2d

2d − 2
logd

)
<A(n) <

n− 2

2d − 2
(6d − 9)n−1. (10.6)

Proof To prove the lower bound we construct elongated contours of size n which
enclose the site x. To that aim we consider a chain of k adjacent lattice points starting
at x. Moving along the chain from one site to the next site we jump one step towards
one of the d positive coordinate directions. This guarantees that two chains are
different if only one of their jumps is in a different direction. Clearly there exist
dk−1 different chains of this type. We now consider the corresponding dual d-chain,
the border of which is a Peierls contour which encloses x. More explicitly, the d-
chain is just the union of the k elementary cubes dual to the sites along the chain. The
size of such a contour is the surface area of the d-chain which is n= (2d − 2)k+ 2,
since the inner areas of the chain-segments cancel. Thus the length of the chain is

k(n)= n− 2

2d − 2
, (10.7)

and we obtain the lower bound

A(n) > dk(n)−1 = d(n−2d)/(2d−2) = exp

(
n− 2d

2d − 2
logd

)
. (10.8)

To derive the upper bound we proceed similarly as in two dimensions. Thereby we
call a k-dimensional cube on the lattice k-cube. In particular 2-cubes and 1-cubes are
plaquettes and links, respectively. The corresponding objects from the dual lattice
are called dual cubes, dual plaquettes and dual links. Here we are mostly dealing
with dual (d − 1)-cubes which we call cells.

The ray x + λe1 emanating from x intersects every contour γx around x at least
once. We focus on that cell in the contour γx with maximal distance λmax from x.
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The possible values of λmax are − 1
2 +k with k ∈ {1, . . . , k(n)} and k(n) from (10.7).

Thereby the largest value is realized for a column with base area of 1 and length k(n)
towards the e1-direction. Beginning with the cell with maximal distance from x we
construct a Peierls contour around x by successively gluing more and more cells
together. We can glue a cell to one of the 2d − 3 free faces of an already attached
cell. Actually there are three ways to glue a cell to the face of a given cell: A face is
a dual (d−2)-cube and defines a unique plaquette on the original lattice. The newly
glued cell must be dual to one of the links forming the boundary of this plaquette.
But one of the four links on the boundary of the plaquette is dual to the already
attached cell and hence must be excluded. Thus we are left with three possible ways
of gluing. Multiplying the combinatorial factors yields the upper bound in (10.6). �

To prove spontaneous symmetry breaking at low temperatures we assume that
the constant α = 4K − 2 log(6d − 9) is positive. The probability for the spin at x to
be −1 is bounded from above as

P+[sx =−1] ≤
∑

m∈N
A(2m)e−4Km ≤ 1

ζ 2

y2

(1− y)2
, (10.9)

where we used the abbreviations

y = e−α and ζ 2 = 3(2d − 3)(d − 1). (10.10)

This probability is less than 1/2 for

y <
ζ

ζ +√
2

or K >
1

4
log

(
1+

√
2

ζ

)
+ 1

2
log(6d − 9). (10.11)

In two dimensions ζ 2 = 3 and we recover our previous result. For d = 3 we have
ζ 2 = 9/2 and we observe two phases, if

K >
1

4
log 135 or T < 0.1359Tc,mf. (10.12)

From the mean field result we expect that Kc decreases as 1/d . Hence the lower
bounds (10.11) are by no means optimal. The inequality derived in [8] is much
better in high dimensions,

A(n)≤ exp
(
64n(logd)/d

)
. (10.13)

However, an easier way to prove the existence of an ordered low temperature phase
in higher-dimensional ferromagnetic systems makes use of the correlation inequal-
ities in Sect. 8.6 in conjunction with the known results for the two-dimensional
system.

10.2 Duality Transformation of Two-Dimensional Ising Model

In their pioneering work KRAMERS and WANNIER discovered a transformation
which maps the 2d-Ising model with couplings (β,h= 0) into itself, but with cou-
plings (∗β,h= 0) [2, 3]. The temperature after the transformation is a monotonously
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Fig. 10.3 A high-tempera-
ture graph G of the two-
dimensional Ising model of
length L(G)= 12. The dual
lattice ∗Λ with its lattice
points ∗x is illustrated as well

decreasing function of the temperature of the original model such that the high-
temperature phase maps into the low-temperature phase and vice versa. We begin
with rewriting the high-temperature series expansion of the partition function in
Sect. 9.2 as follows (K = βJ ):

Z = (coshK)P
∑

ω

∏

〈x,y〉
(1+ νsxsy)= (coshK)P 2V

∑

G∈G
νL(G)

= (coshK)P 2V
∑

G

∏

x

νnx(G)/2, ν = tanh(K)) 1. (10.14)

Here P is the number of nearest-neighbor pairs and G the set of high-temperature
graphs. These are diagrams with closed curves (loops) and even vertices only. L(G)
denotes the length of the graph G or the number of its links. Figure 10.3 shows
a high-temperature graph with L(G) = 12. Finally, the even number nx(G) in the
last representation of the partition function is equal to the number of links ending at
vertex x. In two dimensions nx(G) takes the values 0,2, or 4.

Now we shall argue that the sum (10.14) may be viewed as partition function
on the dual lattice. The dual lattice ∗Λ of a square lattice is again a square lattice
with sites at the centers of the plaquettes of the original lattice. Now we assign a
spin configuration ∗ω = {s∗x} on the dual lattice to every spin configuration ω =
{sx} on the lattice as follows: For two nearest neighbors ∗x, ∗y on the dual lattice
we set s∗xs∗y =−1 if a loop of the high-temperature graph belonging to ω crosses
the link between ∗x and ∗y. Else we set s∗xs∗y = 1. Actually the mapping from the
high-temperature graphs to ∗ω is not bijective since ∗ω and −∗ω belong to the same
graph. On the other hand, ω and −ω also belong to the same high-temperature graph
and this implies that there is a bijective mapping ω→ ∗ω. The loops of a graph G

encircle a set X of sites on the dual lattice and all spins s∗x in X have the same sign.
The spins in the complement of X have the other sign.
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Let us consider the plaquette p(x) on the dual lattice with vertices ∗x, ∗y, ∗u, ∗v
and center point x ∈Λ. Now it easy to see that the order of the vertex x is

nx = 2− 1

2
(s∗xs∗y + s∗ys∗u + s∗us∗v + s∗vs∗x)≡ 2− 1

2
p(x). (10.15)

Inserting this result into the partition function (10.14) yields

Z = (coshK)P 2V
∑

∗ω

∏

x

(
ν · ν−p(x)/4)

= (coshK)2V (2ν)V
∑

∗ω
v
− 1

2

∑
〈∗x,∗y〉 s∗xs∗y

= (2 sinhK coshK)V
∑

∗ω
e−∗β∗H(s), (10.16)

where we took into account that every dual link belongs to two plaquettes. In the
last step we defined v = exp(−2∗K). We may rewrite this relation as follows,

2 sinh
(
2∗K

)= e2∗K − e−2∗K = 1

v
− v = cothK − tanhK = 2

sinh 2K
.

Hence, the duality relation takes the symmetric form

sinh 2K · sinh 2∗K = 1. (10.17)

This duality relation links the temperature T of the Ising model with the temperature
∗T of the Ising model on the dual lattice. It is a symmetric and reciprocal relation:
If K increases monotonically from 0 to ∞ then ∗K decreases monotonically from
∞ to 0. Figure 10.4 shows the function ∗K(K) as well as the fixed point of the map
K →∗K . By using (10.17) we obtain the relation

(2 sinhK coshK)2 = sinh 2K sinh 2K
(10.17)= sinh 2K

sinh 2∗K
.

Together with (10.16) this leads to the duality relation

Z(K)

(sinh 2K)V/2
= Z(∗K)

(sinh 2∗K)V/2
. (10.18)

Let us now assume that there is a critical coupling Kc where the free energy density
(in the thermodynamic limit) is singular. Then the duality relation (10.18) implies
that there must exist another singularity at ∗Kc. Hence, in the case of there being a
unique critical point, it would be located at Kc = ∗Kc. Then Kc is a solution of

sinh 2Kc =±1 �⇒ Kc =±1

2
log

(
1+√

2
)≈±0.4407.

The negative solution thereby corresponds to the anti-ferromagnetic case J < 0. For
the ferromagnetic Ising model we obtain the critical temperature

Tc = 2J

log(1+√
2)

≈ 2.2692J. (10.19)

For systems with several critical points the duality relation leads to relations between
pairs of critical couplings only.



10.2 Duality Transformation of Two-Dimensional Ising Model 213

Fig. 10.4 Relation between
the reduced temperature K on
the lattice Λ and the reduced
temperature ∗K on the dual
lattice ∗Λ

10.2.1 An Algebraic Derivation

We now present a second, more algebraic, derivation of the duality relation which
generalizes more easily to higher dimensions and to other spin systems. We rewrite
the Ising model partition function in d dimensions as follows,

Z =
∑

ω

∏

〈x,y〉
(coshK + sinhKsxsy)=

∑

ω

∏

〈x,y〉

∑

k=0,1

ck(K)(sxsy)
k, (10.20)

where we defined c0(K) := coshK and c1(K) := sinhK . At this point we are lead
to introduce a field which assigns to every link either 0 or 1,

k : 〈x, y〉→ kxy ∈ {0,1}.
For a fixed configuration of link variables {kxy} we obtain the following contribution
to the partition function:

∑

ω

∏

〈x,y〉
ckxy (K)(sxsy)

kxy =
∏

〈x,y〉
ckxy (K)

∑

ω

∏

〈x,y〉
(sxsy)

kxy

=
∏

〈x,y〉
ckxy (K)

∑

ω

∏

x

s∂k(x)x , (10.21)

where ∂k(x) is the sum of all variables defined on links ending at x,

∂k(x)=
∑

y:〈y,x〉
kxy =

∑

�:x∈∂�
k�.

The operator ∂ represents the discrete version of the divergence and in d dimensions
and takes the values {0,1, . . . ,2d}. For any integer n we have

∑

s=−1,1

sn = 2δ2(n), δ2(n)=
{

1, n even,
0, n odd,

(10.22)
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such that the sum over all spin configurations in (10.21) is performed easily and
leads to the following representation of the partition function in arbitrary dimen-
sions:

Z = 2V
∑

{k}

∏

�

ck�(K)
∏

x

δ2
(
∂k(x)

)
. (10.23)

We now assign a spin configuration ∗ω on the dual lattice to each configuration
k = {k�} on the links as follows: If the link 〈∗x, ∗y〉 between two nearest neighbors
∗x and ∗y on the dual lattice crosses the link � we set

k� = 1

2
(1− s∗xs∗y). (10.24)

We recover the relation (10.15) wherein nx is equal to the divergence of k at x,

∂k(x)= 2− 1

2
p(x).

Since p(x) ∈ {−4,0,4} the right hand side is always even and all δ2-constraints
in (10.23) are fulfilled. This means that the transformation (10.24) yields all link
configurations {k} that satisfy the δ2-constraints. The sum over link configurations
turns into the sum over spin configurations on the dual lattice. Since every link
corresponds to exactly one link on the dual lattice, the product over all � becomes
the product over all nearest-neighbor pairs 〈∗x, ∗y〉. Thus (10.23) can be written as

Z = 2V
∑

∗ω

∏

〈∗x,∗y〉
c(1−s∗xs∗y)/2(K). (10.25)

Rewriting ck(K) according to

ck�(K)
(10.24)= (coshK sinhK)1/2 exp

(
−1

2
s∗xs∗y log tanhK

)

and inserting this into (10.25) gives

Z = (2 coshK sinhK)V
∑

∗ω
exp

(
−1

2
log tanhK

∑

〈∗x,∗y〉
s∗xs∗y

)

= (
sinh 2∗K

)−V ∑

∗ω
exp

(
∗K

∑

〈∗x,∗y〉
s∗xs∗y

)
, (10.26)

where ∗K is related to K as in (10.17). Thus we recovered our previous result.

10.2.2 Two-Point Function

In order to interpret the dual spins s∗x we slightly modify the previous derivation to
determine the 2-point function of the dual model:

〈s∗xs∗y〉 = 1
∗Z

∑

∗ω
s∗xs∗y exp

(
∗K

∑

〈∗u,∗v〉
s∗us∗v

)
.
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The partition function ∗Z in the denominator has already been dualized and we focus
on the numerator,

Z∗x∗y =
∑

∗ω
s∗xs∗y exp

(
∗K

∑

〈∗u,∗v〉
s∗us∗v

)

=
∑

∗ω
s∗xs∗y

∏

〈∗u,∗v〉

∑

k=0,1

ck
(∗K

)
(s∗us∗v)

k,

where the product extends over all nearest-neighbor pairs on ∗Λ. Thus we have

Z∗x∗y = 2V
∑

{k}

∏

∗�
ck∗�

(∗K
)∏

∗u
δ2
(
δ∗u∗x + δ∗u∗y + ∂k

(∗u
))
. (10.27)

We now wish to find a representation for the configurations {k} on the dual links such
that all δ2-constraints in (10.27) are fulfilled. We proceed as follows: We connect
the points ∗x and ∗y by an arbitrary path C∗x∗y on the dual lattice as illustrated in
Fig. 10.5. We then choose the following representation for the dual-link variables:

k∗� =
{

1
2 (1− sxsy),

∗� /∈ C∗x∗y,
1
2 (1+ sxsy),

∗� ∈ C∗x∗y.

In other words if the link 〈x, y〉 on the lattice intersects the path ∗C∗x∗y on the dual
lattice, then we modify the transformation rule. According to this representation, ∂k
is an even number for all lattice points ∗Λ, except for ∗x, ∗y, where it is odd. Hence,
we may cast the representation (10.27) in the form

Z∗x∗y = 2V
∑

ω

∏

〈x,y〉∈S∗x∗y
c(1+sxsy)/2

(∗K
) ∏

〈x,y〉/∈S∗x∗y
c(1−sxsy)/2

(∗K
)
,

where S∗x∗y denotes the set of links on the lattice Λ which intersect the path C∗x∗y .
With a calculation similar to the one above (10.26) we arrive at

Z∗x∗y = (sinh 2K)−V
∑

ω

exp

(∑

〈x,y〉
Kxysxsy

)
. (10.28)

Note that the couplings in the exponent depend on the nearest neighbor pair: if the
link between a pair does not intersect the path C∗x∗y , then the corresponding cou-
pling is given by βJ . If the link between the pair does intersect the path C∗x∗y , then
the corresponding coupling −βJ is negative and anti-ferromagnetic. In summary,
the numerator Z∗x∗y itself is a partition function with ferromagnetic as well as anti-
ferromagnetic couplings between nearest neighbors. Thus the correlation function
〈s∗xs∗y〉 of the dual Ising model is the ratio of two partition functions on Λ. One
contains ferromagnetic and anti-ferromagnetic couplings, whereas the other one in-
cludes only ferromagnetic couplings.
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Fig. 10.5 A path on the dual
lattice connecting the
arguments ∗x and ∗y of the
two-point correlation function

10.2.3 Potts Models

The two-dimensional standard q-state Potts model with energy function (6.10) is
self-dual and the duality relation between the couplings reads

e−∗Kp = 1− e−Kp

1+ (q − 1)e−Kp
, Kp = βJp, (10.29)

see the problem on p. 227. A particular simple proof based on the random-bond
model was given in [9]. On a finite lattice the duality transformation can be extended
to Potts models subject to cyclic boundary conditions,

sx+Nei = sx + ci, ci mod q, (10.30)

and this generalization may be utilized to study universal aspects of phase transitions
in three-dimensional gauge theories [10].

10.2.4 Curl and Divergence on a Lattice

Consider a hypercubic lattice Λ in d dimensions and its dual lattice ∗Λ. Suppose
that there are some statistical variables k� defined on the oriented links of Λ. If we
change the orientation of �, then k� changes its sign, k〈x,y〉 = −k〈y,x〉. The k� should
belong to an Abelian group with the addition as group operation. The circulation
along the perimeter of a elementary plaquette p is

dk
(∗x

)=
∑

�∈∂p
k�, (10.31)

where the site ∗x on the dual lattice sits in the center of the plaquette p. If k is
curl-free, dk = 0, then it is (locally) the gradient of a function ϕ

k〈y,x〉 = ϕ(y)− ϕ(x). (10.32)
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In this case the ‘integral’ along any contactable loop C on the lattice vanishes,
∮

C
k =

∑

�∈C
k� = 0. (10.33)

The links must have the same orientation as the loop. Besides the curl we can define
a discrete version of the divergence on the lattice. The divergence of k is

(∂x)(x)=
∑

�:x∈∂�
k�, (10.34)

where all links are emanating from x. For a divergence-free field the flux through
elementary cubes of the dual lattice vanish.

We do not want to go any further at this point. However, if one goes beyond
hypercubic lattices in higher dimensions it is useful to know some basic facts about
the difference calculus on lattices. A comprehensive and exhaustive representation
based on simplices, chains, border and co-border operators and Stokes theorem is
contained in [11].

10.3 Duality Transformation of Three-Dimensional Ising Model

The three-dimensional Ising model is not self-dual—the application of the duality
transformation yields the Z2 lattice gauge theory. Thus we cannot predict its critical
point form duality alone. But a duality relating two different models can be useful
for studying the excitations in the high- and low-temperature regimes since it is still
true that the transformation relates the high-temperature phase of one model to the
low-temperature phase of the other model and vice versa.

Our point of departure is the representation (10.23) of the partition function,

Z = 2V
∑

{k}

∏

�

ck�(K)
∏

x

δ2
(
∂k(x)

)
, (10.35)

which holds in all dimensions. In three dimensions the divergence at a given site

(∂k)(x)=
∑

�:x∈∂�
k� (10.36)

is the sum of six terms—one term for every link ending at x—and attains the values
{0,1, . . . ,6}. Again we can fulfill the δ2-constraints on ∂k(x) in (10.35) by intro-
ducing suitable variables on the dual lattice ∗Λ. The dual of a hypercubic lattice is
again a hypercubic lattice with sites in the centers of the elementary cells of the
original lattice. Nearest neighbors of ∗Λ sit in adjacent cells. Every link � crosses
exactly one plaquette ∗p� of the dual lattice as depicted in Fig. 10.6. We now assign
to every link ∗� of the dual lattice a variable U∗� with values in the Abelian group
Z2 = {−1,1}. Next we map a link configuration {U∗�} on the dual lattice to a link
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Fig. 10.6 Every link � of the
lattice crosses exactly one
plaquette ∗p� of the dual
lattice and a dual plaquette
has four dual links as edges

configuration {k�} on the original lattice as follows: If ∗p� is the plaquette dual to �,
then we set

k� = 1

2
(1−U∗p�), where U∗p =

∏

∗�∈∂∗p
U∗� (10.37)

is the product of the link variables of the four edges bounding the dual plaquette.
Now we shall prove that the divergence of k only takes the values 0,2,4 and 6 and
thus satisfies all δ2-constraints in (10.35).

To calculate the divergence of k at x we consider the elementary cube cx of the
dual lattice with center x. The six links ending at x intersect the six plaquettes on
the boundary of cx , such that the divergence in (10.36) takes the form

∂k(x)= 3− 1

2

∑

∗p∈∂cx
U∗p. (10.38)

The plaquette variables U∗p have the values 1 or −1 and if all dual-link variables
U∗� on the edges of the cube cx are 1, then the divergence at x is zero. In contrast, if
we change the sign of one link variable then exactly two plaquette variables change
sign such that the sum changes by a multiple of 4 or the divergence by a multiple
of 2. This then proves that ∂k takes the values in {0,2,4,6} and thus fulfills the
δ2-constraints.

We now rewrite the product over all links in (10.35) as a product over all dual
plaquettes. Since k in (10.37) satisfies all δ2-constraints in (10.35) we find

Z = 2V
∑

{k(U)}

∏

{∗p}
c 1

2 (1−U∗p)(K). (10.39)

Below we shall see that there are many different configurations {U∗�} belonging to
the same configuration {k�}. Configurations which are mapped into the same k are
called equivalent. By construction equivalent configurations have the same weight
c in (10.39) and the sum over {k} in the partition function (10.35) becomes a sum
over equivalence classes. This is indicated by the sum over {k(U)} in (10.39). Using
the relation
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ck� = coshKek� log tanhK

(10.37)= (coshK sinhK)1/2 exp

(
−1

2
log tanKU∗p�

)

we end up with the following representation of the partition function:

Z = 2V (coshK sinhK)3V/2
∑

{k(U)}
exp

(
∗K

∑

{∗p}

∏

∗�∈∂∗p
U∗�

)
. (10.40)

Note that the sum in the exponent extends over all plaquettes of the dual lattice.
Besides, the relation ∗K(K) is of the same form as in two dimensions,

∗K =−1

2
log tanhK. (10.41)

10.3.1 Local Gauge Transformations

Let us now determine the set of configurations {U∗�} which are mapped into the
same configuration {k�} by the mapping (10.37). Multiplying the group elements
U∗� on all links ∗� ending at a fixed ∗x with −1 does not change {k�} and {U∗p�}
since every dual plaquette contains either two or none of these links. This operation
may be performed at each site of the dual lattice independently such that there are
2V

∗
equivalent configurations in each class. Thus we conclude that the variables

{k�} and {U∗p} do not change under so-called gauge transformations of the dual-
link variables,

U〈∗x,∗y〉 →U ′〈∗x,∗y〉 = g∗xU〈∗x,∗y〉g−1∗y , g : ∗Λ→ Z2 = {−1,1}. (10.42)

They are examples of gauge invariant variables. Other gauge invariant objects are
the so-called Wilson loop variables: for any closed path (loop) ∗C on the dual lattice
the gauge invariant loop variable is

W
(∗C

)=
∏

�∈∗C
U∗� ∈Z2. (10.43)

Now the question arises how to perform the sum in (10.40) over gauge-nonequiva-
lent configurations {U∗�}, i.e. configurations with different k(U). There are two pos-
sible approaches: e.g. one fixes the gauge and picks from each gauge class

{U〈∗x,∗y〉} ∼
{
g∗xU〈∗x,∗y〉g−1∗y

}≡ gU〈∗x,∗y〉 (10.44)

one representative and sums over these representatives. Since equivalent configura-
tions give the same contribution it does not matter which representatives are picked.
Alternatively, one simply sums over all configurations {U∗�} in (10.40). Of course,
we over-count, but since every class contains the same number of configurations
this over-counting results in the same factor 2V

∗
, independently of k. In doing so,

we find for cubic lattices with V = V ∗ the result

Z = (coshK sinhK)3V/2 ·
∑

{U}
exp

(
∗K

∑

{∗p}

∏

∗�∈∂∗p
U∗�

)
. (10.45)
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Since {g∗x} entering a gauge transformation gU is a site-dependent lattice field
we call the gauge transformation local and theories which admit a local (space-
dependent) symmetry are called gauge theories. What we have proven then is that
the three-dimensional Ising model is dual to a Z2 gauge theory. This duality holds
in both directions and the transformation is idempotent [6].

Finally, we may cast the gauge transformation (10.42) into a form that empha-
sizes the connection with electrodynamics in three Euclidean spacetime dimensions.
We therefore write

U〈∗x,∗y〉 = exp(iπA〈∗x,∗y〉), g∗x = exp(iπλ∗x),

where the variables A〈∗x,∗y〉 and λ∗x belong to the additive group Z2 = {0,1}. The
gauge transformation (10.42) for the gauge potential A assumes the well-known
form

A〈∗x,∗y〉 →A′〈∗x,∗y〉 =A〈∗x,∗y〉 + (λ∗x − λ∗y). (10.46)

Since the last term between brackets represents the discretized gradient of the lattice
field λ this formula is just the lattice version of the well-known gauge transformation
A′
μ =Aμ + ∂μλ in electrodynamics.

10.4 Duality Transformation of Three-Dimensional Zn Gauge
Model

Here we extend the results of the previous section to Zn models. This time the
point of departure are the Zn gauge theories which are mapped into Zn spin models
by the duality transformation. We shall use a slightly different method which em-
phasizes the close relationship between finite Fourier transformations and duality
transformations [12]. The link variables of the Zn gauge theory are elements of the
multiplicative cyclic group, the elements of which can be written as

U� = e2π iθ�/n, θ� ∈ {0,1, . . . , n− 1}. (10.47)

The θ� are in the additive group of integers with addition performed modulo n. As
in the previous section we introduce the plaquette variables,

Up =
∏

�∈∂p
U� = e2π iθp/n, θp =

∑

�∈∂p
θ�, (10.48)

where the orientation of a link on the boundary of a plaquette is inherited from the
orientation of the plaquette. The real and gauge invariant energy function contains
the sum over all plaquettes,

S =
∑

p

(1−�Up)=
∑

p

(
1− cos

2πθp
n

)
. (10.49)
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Here we interpret the energy function as Euclidean action of a lattice gauge the-
ory with coupling constant g related to β according to β = 1/g2. In the partition
function one sums over the 3V link variables,

Z(β)=
∑

{θ�}
e−βS = e−3βV

∑

{θ�}

∏

p

exp

(
β cos

2πθp
n

)
. (10.50)

To extend the duality transformation from the Ising model to Zn models we perform
for each plaquette a finite Fourier transform on Zn,

exp

(
β cos

2πθ

n

)
=

n−1∑

k=0

ck(β) cos

(
2πθk

n

)
. (10.51)

At a fixed plaquette the Fourier coefficients are given by the inverse transformation

ck(β)= 1

n

n−1∑

θ=0

exp

(
β cos

2πθ

n

)
cos

(
2πθk

n

)
. (10.52)

Inserting the Fourier representation into (10.50) yields

Z(β)= e−3βV
∑

{θ�}

∏

p

n−1∑

kp=0

ckp (β) exp

(
2π iθpkp

n

)

= e−3βV
∑

{θ�}

∑

{k}

(∏

p

ckp (β)

)
exp

(∑

p

2π iθpkp
n

)
. (10.53)

Writing every plaquette variable θp as a sum of link variables as in (10.48) the
exponent takes the form

2π i

n

∑

�

θ�
∑

p:�∈∂p
kp, (10.54)

and the sum over θ� leads to the constraint
∑

p:�∈∂p
kp = 0 mod n, (10.55)

where the summation symbol is defined to include the sign corresponding to the
relative orientation of p and �. The sum extends over the plaquettes of the staple
belonging to �, i.e. the plaquettes with a boundary containing the link �. The staple
of � in Fig. 10.7 consists of the four plaquettes p, . . . ,p′′′′. To summarize, the sum
over the configurations {θ�} can calculated and yields

Z(β)= e−3βV
∑

constrained{k}

∏

p

ckp . (10.56)

To solve for the constraints it is convenient to switch to the dual lattice. With each
link � and plaquette p of the original lattice we associate the dual plaquette ∗p and
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Fig. 10.7 The link � is at the
boundary of the four
plaquettes p,p′,p′′ and p′′′
defining the staple belonging
to the link. The links
∗�, ∗�′, ∗�′′ and ∗�′′′ dual to
these plaquettes form a loop
which encircles � and form
the boundary of the plaquette
∗p dual to �

dual link ∗� of the dual lattice. One may write kp = k∗� such that the constraint
(10.55) can be written as

∑

∗�∈∂∗p
k∗� = 0 mod n. (10.57)

We conclude that the configurations {k∗�} on the dual lattice have no circulation and
thus can be written as gradients of Zn-spin configurations on the dual lattice,

k∗� = s∗x − s∗y, (10.58)

where ∗x and ∗y are the two end points of ∗� and the difference is modulo n. In
terms of the unconstrained spin variables {s∗x |∗x ∈ ∗Λ} the partition function takes
the form

Z(β)= const×
∑

{s}
e−∗β∗S[s]. (10.59)

The action (energy) of the dual spin model is the sum of nearest neighbor terms,

∗S[s] =
∑

∗�

∗s(k∗�), k∗� = s∗x − s∗y,
∗�= 〈∗x, ∗y

〉
, (10.60)

and the nearest neighbor interaction is given by the Boltzmann weights

e−∗β∗s(k) = ck(β)= 1

n

n−1∑

�=0

eβ cos(2π�/n) cos

(
2π�

k

n

)
, k ∈ Zn. (10.61)

Note that the contributions with � and n−� are identical. The Boltzmann weights of
the Z2,Z3 and Z4 spin models are listed in Table 10.1. For n≤ 4 we find the energy
functions of the clock (planar Potts) models, see Sect. 6.2.2. In particular, for n= 2
we recover the nearest neighbor interaction of the 2-state clock model,

∗β∗s(k)= c̃0(β)− ∗β cos

(
2πk

2

)
, ∗β = 1

2
log cothβ, (10.62)
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Table 10.1 The Boltzmann
weights exp[−∗β∗s(k)] for
the Z2,Z3 and Z4 spin
models dual to gauge theories
in three dimensions

n k = 0 k = 1 k = 2 k = 3

2 eβ + e−β eβ − e−β

3 eβ + 2e−β/2 eβ − e−β/2 eβ − e−β/2

4 eβ + 2+ e−β eβ − e−β eβ − 2+ e−β eβ − e−β

Table 10.2 The critical couplings ∗βc of the planar Potts models [13] and the corresponding crit-
ical couplings βc of the dual Zn spin systems in three dimensions

n= 2 n= 3 n= 4

∗βc(Potts models) 0.2217 0.367 0.4434

βc(Zn gauge models) 0.7613 1.084 1.5226

which is equivalent to the ubiquitous Ising model, together with the already known
dual coupling. Recall that k is the difference of neighboring spin variables. Simi-
larly, the Z3-gauge theory is dual to the 3-state clock model with nearest neighbor
interaction

∗β∗s(k)= c̃0(β)− ∗β cos

(
2πk

3

)
, β∗ = 2

3
log

(
eβ + 2e−β/2

eβ − e−β/2

)
, (10.63)

where k ∈ {0,1,2}. Finally, the Z4 gauge theory is dual to the 4-state clock model
with nearest neighbor interaction given by

∗β∗s(k)= c0(β)− ∗β cos

(
2πk

4

)
, ∗β = log coth

β

2
, (10.64)

which is equivalent to two copies of the Ising model. For n > 4 the dual models are
not clock models but belong to the class of generalized Zn spin models with energy
functions (6.15).

The three-dimensional Ising model and more generally the n-state Potts model
shows a phase transition from an ordered low-temperature phase into a disordered
high-temperature phase at a critical point βc . From the duality map we conclude
that the dual gauge theory also shows a transition at ∗βc = ∗β(βc). For small n the
critical temperatures of the clock models are known [13] and the resulting critical
couplings of the dual gauge theories are listed in Table 10.2.

10.4.1 Wilson Loops

Let us discuss the gauge invariant Wilson loops as correlation function. Recall that
the Wilson loop WC is the product of the link variables U� around a closed curve C,
where the orientation of � is inherited from the orientation of the loop C. Thus

WC =
∏

�∈C
U� = exp

(
2π i

n

∑

�∈C
θ�

)
. (10.65)
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The expectation value of Wilson loops

〈WC〉 = 1

Z(β)

∑

θ�

WC[θ ]e−βS[θ] (10.66)

can be dualized similarly as the partition function. The constraint (10.55) is thereby
changed to

∑

p:�∈∂p
kp + δ�,C = 0 mod n, (10.67)

where the additional term is 1 if � ∈ C and else is 0. On the dual lattice this additional
term leads to the modified constraint

∑

∗�∈∂∗p
k∗� + linking

(
∂∗p,C

)= 0 mod n, (10.68)

where linking(∂∗p,C) = 1 if the boundary of the plaquette ∗p and the loop C are
linked and otherwise is 0. Consider now an arbitrary surface S bounded by C and
made up or plaquettes p1, . . . , pr . Let ∗�1, . . . ,

∗�r be the variables on links dual to
these plaquettes. They intersect the surface S such that the constraints are solved by

k∗� = s∗x − s∗x + intersect
(∗�,S

)
. (10.69)

This then leads to the following result:

〈WC〉 =
〈 ∏

∗�∩S �=0

c∗�+1

c∗�

〉
, (10.70)

where the expectation value is evaluated in the dual spin model with Boltzmann
weights (10.61). In particular, when C is the boundary of a single plaquette with
dual link ∗�, we obtain

〈Wp〉 =
〈
c∗�+1

c∗�

〉
. (10.71)

Since the gauge action (energy) is proportional to the sum of the Wp we interpret
〈Wp〉 as average action density given by the derivative of the free energy density
with respect to the coupling β . This means that an nth-order phase transition is a
discontinuity in the (n− 1)th derivative of 〈Wp〉(β).

10.4.2 Duality Transformation of U(1) Gauge Model

Numerical and theoretical arguments indicate the absence of phase transitions in the
three-dimensional U(1) lattice gauge theory [12, 14, 15]. The model shows con-
finement for all values of the coupling β , analogous to the expected behavior of
non-Abelian gauge theory in four dimensions. The theory is defined as the n→∞
limit of the Zn gauge theories. In this limit a link variables

2πθ�
n

with θ� ∈ Zn (10.72)
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turn into real variables θ� with values in [0,2π) and the link variables exp(iθ�) into
elements of the Abelian group U(1). The lattice action becomes

S =
∑

p

(1− cos θp), θp =
∑

�∈∂p
θ�, (10.73)

and it is invariant under local gauge transformations

θ〈x,y〉 → θ〈x,y〉 + λx − λy, λx,y ∈ [0,2π). (10.74)

The sum over θ� in the Zn-partition function (10.50) becomes an integral such that
the partition function of the U(1) model takes the form

Z(β)=
∫ ∏

�

dθ� e−βS. (10.75)

with the action (10.73). The dual of the U(1) gauge theory is the n→∞ limit of
the spin systems dual to the Zn gauge models. In particular the sum in (10.52) turns
into an integral which can be expressed in terms of modified Bessel functions,

ck(β)= 1

2π

∫ 2π

0
dθ eβ cos θ cos(kθ)= Ik(β), k ∈ Z. (10.76)

Now the sum defining the constraint (10.55) must vanish in Z and not only in Zn

such that the partition function has the dual representation

Z(β)= const×
∑

{s}

∏

〈∗x,∗y〉
Is∗x−s∗y (β), (10.77)

where one averages over all spin configuration {s∗x ∈ Z} defined on the sites of the
dual lattice. For weak couplings one can use the approximation

Ik(β)→ eβ√
2πβ

e−k2/4β for β →∞ (10.78)

to further simplify the partition function. Various expressions for the partition func-
tion in the weak-coupling regime and physical pictures of the phases have been
obtained in [16].

10.5 Duality Transformation of Four-Dimensional Zn Gauge
Model

The dual of an Abelian lattice gauge theory in four dimensions is again an Abelian
lattice gauge theory [4]. In particular, the Z2,Z3 and Z4 systems are self-dual and
show one phase transition at their self-dual points. Zn gauge theories based on the
Wilson action (10.49) are no longer self-dual for n ≥ 5 and show two phase tran-
sitions with a massless phase appearing between the strong- and weak-coupling
phases [17–19]. However, systems with gauge invariant Villain action [20] instead
of the Wilson action are self-dual for all n.
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To find the dual of the Zn-gauge theory with Wilson action we proceed as in
Sect. 10.4 up to the result (10.56). To solve the constraint (10.55) we again switch
to the dual lattice. In four dimensions the dual of a plaquette p is a plaquette ∗p
on the dual lattice and the dual of a link � is a cube ∗c on the dual lattice. We set
kp = θ∗p . The constraint (10.55) on the original lattice translates into

∑

∗p∈∂∗c
θ∗p = 0 mod n (10.79)

on the dual lattice. Since the configuration {θ∗p} has no circulation it can be written
as (generalized) gradient of a configuration defined on the dual links,

θ∗p =
∑

∗�∈∂∗p
θ∗�, (10.80)

where the summation symbol is defined to include the sign corresponding to the
relative orientation of ∗p and ∗� ∈ ∂∗p. In terms of the unconstrained link variables
{θ∗�} the partition function takes the form

Z(β)= const×
∑

{θ∗�}
e−∗β∗S, (10.81)

where the action contains a sum over the plaquettes of the dual lattice,

∗S =
∑

∗p

∗s(θ∗p). (10.82)

The contribution of a single plaquette to the Boltzmann weight is

e−∗β∗s(θ) =
n−1∑

�=0

eβ cos(2π�/n) cos

(
2π�

θ

n

)
. (10.83)

From Table 10.1 we can read off the single plaquette action of the dual Z2,Z3 and
Z4 gauge models. They define the Wilson actions

∗S(θp)= const(β)−
∑

∗p
cos

(
2πθ∗p
n

)
, n= 2,3,4, (10.84)

on the dual lattice with dual couplings ∗β = ∗β(β) given below Table 10.1. We
conclude that the Z2,Z3 and Z4 gauge models with Wilson action are self-dual in
four dimensions. If any of these models possess one critical coupling, then it must
be the self-dual coupling defined by ∗β = β . The self-dual couplings for the Z2,Z3,
and Z4 gauge theories are listed in Table 10.3.

Probably the most attractive feature of duality transformations is the relation be-
tween strong-coupling and weak-coupling regimes, or between high temperature
and low temperature phases of dual theories. For small couplings we can trust weak-
coupling perturbation theory and with duality we may use the perturbative results
to study the non-perturbative sector of the dual theory. Further results on dualities,
in particular on the representation of various correlation functions in the dual model
can be found in the reviews cited at the end of this chapter.
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Table 10.3 Self-dual
couplings β(∗β = β) of the
Zn gauge theories in four
dimensions

n= 2 n= 3 n= 4

βself-dual
1
2 log(1+√

2) 2
3 log(1+√

3) log(1+√
2)

≈0.44069 ≈0.67004 ≈0.88137

10.6 Problems

10.1 (Self-duality of Potts chain in magnetic field) We wish to show that the q-state
Potts chain with partition function (8.34) admits a duality transformation. To this
aim we consider the auxiliary function

Z̃Λ(ζ, z)=
(
(ζ − 1)(z− 1)

)−N/2
ZΛ(ζ, z)

= q ′
(
ζ − 1

z− 1

)N/2

+
(

λ2+
(ζ − 1)(z− 1)

)N/2

+
(

λ2−
(ζ − 1)(z− 1)

)N/2

depending on the couplings z= e2βh and ζ = eβJ .

1. Show that Z̃ is invariant under duality transformation
(∗
ζ − 1

)
(z− 1)= q,

(∗
z− 1

)
(ζ − 1)= q

according to

Z̃Λ(ζ, z)= Z̃Λ

(∗
ζ,∗z

)
.

Actually all three terms between brackets in the right hand side of the formula
for Z̃Λ are invariant.

2. Show that the duality relations relating the old to the new couplings define two
broken linear Möbius transformations

∗ζ = z+ q − 1

z− 1
and ∗z= ζ + q − 1

ζ − 1
,

and these transformations map circles to circles.
3. The partition function of the Ising chain is given by

ZΛ(ζ, z)=
(

(ζ − 1)(z− 1)

(∗ζ − 1)(∗z− 1)

)N/2

ZΛ

(∗
ζ,∗z

)
,

and in Sect. 8.7.1 we determined the Lee–Yang zeros of the partition function
in the complex fugacity plane. Use the duality transformation to show that the
zeros of the partition function in the complex ζ -plane (for fixed βh ∈ R) are on
the imaginary axis. Compare your results with [21].

10.2 (Self-duality of two-dimensional Potts models) Prove that the standard q-state
Potts model without external field is self-dual in two dimensions. Its energy function
is given in (6.10) wherein h = 0. Show that the relation between the couplings of
the Potts model and dual Potts model is given by (10.29). Use this result to find the
critical temperature of the two-dimensional Potts models.
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10.3 (Dual of Z6-gauge theory in three dimensions) Calculate the dual model of the
Z6 gauge theory with Wilson action in three dimensions. Show that the dual model
belongs to the class of generalized Potts models.
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Chapter 11
Renormalization Group on the Lattice

Previously we considered a variety of equilibrium systems which undergo second
order phase transitions. In this chapter we will show how the idea of scaling leads
to a universal theory of critical phenomena, and we will derive some exact results
for order–disorder transitions.

Simulations of systems with second order transition characterized by an order pa-
rameter show typical configurations in the high- and low-temperature phases and in
the vicinity of a critical point. Characteristic configurations of the two-dimensional
Ising model near the critical temperature are depicted in Fig. 11.1. At high temper-
ature the spins are randomly oriented and there is only a short-range correlation be-
tween the fluctuating spins. With increasing temperature the system becomes more
and more disordered, the already small regions of aligned spins become even smaller
and the correlation length tends to zero. At low temperature, on the other hand, we
typically see aligned spins within macroscopic domains and some few, finite regions
with an opposite alignment. With decreasing temperature the fluctuations over the
mean field become more and more decorrelated and as a result the correlation length
decreases when we cool the system. When we approach the critical point by heating
the system in the low-temperature phase or cooling it in the high temperature phase
then long wave length excitations are most easily excited and dominate the prop-
erties in the critical region. At the critical point there are domains of arbitrary size
and we may not distinguish between images taken at different length scales. The
observed scale invariance is rather unusual since specific physical systems usually
have specific scales. Therefore, in the vicinity of a critical point these specific scales
must in some sense become irrelevant.

What happens to typical configurations in the high- and low-temperature phases
when we gradually change the scale (and not the temperature) by some coarse-
graining procedure, for example by decreasing the resolution of our microscope? In
the disordered high-temperature phase the small domains become even smaller and
this has the same effect as an increase in temperature. In contrast, in the ordered
low-temperature phase the typical size of the macroscopic domains shrink and this
effect is similar to the one obtained by lowering the temperature of the system. In
either case a change in scale with decimation factor b > 1 decreases the correla-

A. Wipf, Statistical Approach to Quantum Field Theory, Lecture Notes in Physics 864,
DOI 10.1007/978-3-642-33105-3_11, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 11.1 Typical configurations from Monte Carlo simulations above and below the critical tem-
perature Tc = 2.2692. The configurations belong to ensembles with T = 2.5 (upper left), T = 2.4
(upper right), T = 2.3 (lower left) and T = 2.2 (lower right)

tion length and drives the system away from its critical point. Only at criticality,
where the correlation length diverges, does a typical configuration not change under
coarse graining. These considerations lead to the natural question whether a scale
transformation is indeed equivalent to a change in temperature and of further cou-
pling constants. Thereby the word equivalent means that the partition function and
correlation functions do not alter.

K. WILSON was awarded the Nobel prize for his major contributions to the
physics of scale transformations or more generally of renormalization group (RG)
transformations. This non-perturbative approach to the description of critical phe-
nomena has become a very powerful tool in statistical physics as well as in quan-
tum field theory. Early contributions to quantum field theory and particle physics
have been obtained by STUECKELBERG, PETERMAN, GELL-MAN, LOW and by
BREZIN. Some ten years later KADANOV [1], FISHER [2, 3] and WILSON [4–6]
developed the renormalization group method in statistical systems. The textbooks
[7–11] present the renormalization group approach within quantum field theory and
statistical physics with applications to critical phenomena. The following sections
are devoted to the following problem: What general properties of the system may
be extracted from RG transformations?

There are many ways to construct scale transformations or more general RG
transformations. Examples of real space RG transformations are the cumulant
method, finite-cluster method, Migdal–Kadanov transformation and Monte Carlo
renormalization. In particular, the latter method yields precise values for the critical
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exponents and will be discussed. Alternatively one may set up the RG transforma-
tion in momentum space with continuous momenta in the Brilloin zone. The mo-
mentum space RG transformation may be performed by integrating out the high mo-
mentum modes. Since high momenta correspond to short length scales, this amounts
to a coarse-gaining in real space. In momentum space the rescaling factor may be
continuous and arbitrarily close to 1. Hence we may consider infinitesimal transfor-
mations. Examples of momentum space RG transformations include the ε expan-
sion, Callan–Symanzik equation and functional renormalization group equations.
The latter can be formulated in the continuum and will be discussed in Chap. 12.

11.1 Decimation of Spins

The decimation of spins can be done exactly for the Ising chain with external field.
The “thinned out” system is identical to the original system at different temperature
and with different external field. However, for spin systems in two and more dimen-
sions each decimation of spins generates new terms in the energy function and the
iterated decimation cannot be performed analytically as for the Ising chain.

11.1.1 Ising Chain

We consider the partition function of the periodic Ising chain with N spins and
energy proportional to

−βH =K

N∑

x=1

sxsx+1 + h

N∑

x=1

sx with K = βJ. (11.1)

We assume N to be an even number. Summing only over every second spin (b= 2),
i.e. over spins at even lattice points, the partition function takes the form

Z(N,K,h)=
∑

s1,s2,...

eKs1s2+ 1
2h(s1+s2)eKs2s3+ 1

2h(s2+s3) × · · ·

=
∑

s1,s2,...

eK(s1s2+s2s3)+ 1
2h(s1+2s2+s3) × · · ·

=
∑

s1,s3,...

(
e(K+ 1

2h)(s1+s3)+h + e−(K− 1
2h)(s1+s3)−h) · · · . (11.2)

Thus, after decimation we obtain an Ising-type system with spins located at the odd
lattice points. We now may introduce new coupling constants K ′, h′ as well as a
function g(K,h) such that

e(K+ 1
2h)(s1+s3)+h + e−(K− 1

2h)(s1+s3)−h = e2g(K,h)eK
′s1s3+ 1

2h
′(s1+s3). (11.3)
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We shall calculate the new couplings and g at a later stage. Inserting the expression
(11.3) for every factor in (11.2) yields the partition function on the thinned out lattice
with couplings K ′, h′:

Z(N,K,h)= eNg
∑

s1,s3,...

eK
′s1s3+ 1

2h
′(s1+s3)eK

′s3s5+ 1
2h

′(s3+s5) × · · ·

= eNgZ

(
N

2
,K ′, h′

)
. (11.4)

We summarize this remarkable result: the decimation of spins reproduces the Ising
model on the thinned out chain with twice the lattice spacing. The energy on the
coarser lattice has the same functional form as on the microscopic lattice,

βH → β ′H ′ − g(K,h)N, −β ′H ′ =K ′ ∑

x′odd

sx′sx′+2 + h′
∑

x′odd

sx′ . (11.5)

We have used a very particular decimation procedure to get to this transformation of
the energy function. Other decimation procedures, where the set of degrees of free-
dom after decimation is not necessarily a subset of the original degrees of freedom
shall be discussed below.

In order to extract the new coupling constants we evaluate Eq. (11.3) for three
different configurations of the two spins (s1, s3). We have

(s1, s3) = (1,1): 2eh cosh(2K + h)= e2geK
′+h′ ,

(s1, s3) = (−1,−1): 2e−h cosh(2K − h)= e2geK
′−h′ ,

(s1, s3) = (1,−1): 2 cosh(h)= e2ge−K ′
.

Solving these equations for K ′, h′ and g, we obtain the map

K
R2→K ′ = 1

4
log

cosh(2K + h) cosh(2K − h)

cosh2 h
,

h
R2→ h′ = h+ 1

2
log

cosh(2K + h)

cosh(2K − h)
, (11.6)

g(K,h)= 1

8
log

(
16 cosh(2K + h) cosh(2K − h) cosh2 h

)
.

Figure 11.2 shows the trajectories of the couplings in the (K,h)-plane after the
repeated application of the decimation transformation R2. The decimation doubles
the distance between neighboring lattice sites as sketched in Fig. 11.3 and this scale
factor appears as index or R. The initial couplings in the plot are K = 2 and h ∈
{±0.2,±0.05,0}. The series of points

(K,h)
R2→ (

K ′, h′
) R2→ (

K ′′, h′′
) R2→ (

K ′′′, h′′′
) R2→ ·· ·

in the plane of couplings is attracted to the axis K = 0. This means that the nearest
neighbor coupling K decreases for every decimation of spins. If the magnetic field
of the microscopic system is zero then it stays zero since the Z2 symmetry without
field is preserved by the decimation map. Thus the line h = 0 is a trajectory of
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Fig. 11.2 The flow of the
couplings (K,h) under
repeated application of the
decimation transformation R2
for the Ising chain. For the
chain the exact
transformation is known and
reproduces the energy
function with nearest
neighbor coupling. The same
flow expressed in terms of the
variables e−2h and e−2K has
been obtained in [12]

Fig. 11.3 Decimation of degrees of freedom by successive blocking transformations. Each dec-
imation R2 reproduces the energy function with different couplings and doubles the distance be-
tween nearest neighbors

the renormalization group (RG). More generally, if Rb is a renormalization group
transformation with scaling factor b, then we have

Rb ◦Rb =Rb2 . (11.7)

Note that there is no inverse of Rb , since we cannot reverse the procedure of integrat-
ing out degrees of freedom. Hence the transformations Rb form only a semigroup
and not a group.

Let us see how the partition functions on the microscopic lattice and on the
coarse-grained lattices are related when R2 is repeated several times. For two deci-
mations the relation (11.4) leads to

Z(N,K,h)= eNg(K,h)e
1
2Ng(K ′,h′)Z

(
N

4
,K ′′, h′′

)
. (11.8)

Further iterations yield the following relation between the free energy densities of
the microscopic and coarse-grained systems,

f (K,h)=− 1

β

(
g(K,h)+ 1

2
g
(
K ′, h′

)+ 1

22
g
(
K ′′, h′′

)+ 1

23
g
(
K ′′′, h′′′

)+ · · ·
)
.

(11.9)



234 11 Renormalization Group on the Lattice

Note that the function g has the same form for every iteration step. For simplicity
we consider the decimation without magnetic field,

K ′ =R2(K)= 1

2
log cosh(2K), g = 1

4
log

(
4 cosh(2K)

)
. (11.10)

Only the couplings K = 0 and K = ∞ are inert under decimation—they are
fixed points of the RG transformation R2. These two couplings represent the high-
temperature and low-temperature fixed points of the Ising chain.

The previous derivation shows that the correlation between two spins defined on
both the microscopic and diluted lattice is the same before and after decimation,

1

Z(N,K)

∑

Ω

sx′sy′ exp

(
K

∑

〈u,v〉
susv

)

= 1

Z( 1
2N,K ′)

∑

Ω ′
sx′sy′ exp

(
K ′ ∑

〈u′,v′〉
su′sv′

)
.

In the decimation (11.4) the sites x′ and y′ must be odd lattice points. Now we
rescale the coarse-grain lattice such that the distance between neighboring sites
shrinks from 2 to 1. Thus, if two points are separated by a distance 2n on the micro-
scopic lattice, then they are separated by a distance n on the rescaled coarse-grained
lattice. It follows that the two-point correlation

〈sxsy〉 ∼ e−|x−y|/ξ , |x − y| � ξ (11.11)

falls off faster after decimation and rescaling. We conclude that every transformation
R2 halves the correlation length ξ , i.e.

ξ ′ = ξ

2
. (11.12)

According to (8.18) the correlation length diverges at the low-temperature fixed
point and vanishes at the high-temperature fixed point. The low-temperature fixed
point is a critical point, whereas at the high-temperature fixed point the interaction
vanishes. The RG trajectories flow into the trivial fixed point with ξ = 0 since the
coupling constant K and correlation length ξ both decrease with every decimation
of spins.

11.1.2 The Two-Dimensional Ising Model

Let us consider the two-dimensional Ising model without external field, given by

βH =−K
∑

〈x,y〉
sxsy. (11.13)

We shall see that the decimation generates, besides nearest-neighbor interactions,
interactions between next-nearest neighbors. Iterating the decimation generates in-
teractions between widely separated spins.
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Fig. 11.4 In one decimation
step one sums over the spins
on the lattice sites marked
with open circles

Again we consider the sum over all configuration in the partition function. In
the decimation we sum over the spins marked by open circles in Fig. 11.4 and thus
construct an effective spin model with spins located at the filled circles. These sites
define the coarse-grained lattice. For example, the contribution of the spin located
at lattice site denoted by 5 is given by

∑

s5=±1

eKs5(s1+s2+s3+s4) = eK(s1+s2+s3+s4) + e−K(s1+s2+s3+s4). (11.14)

The most general Boltzmann weight involving s1, s2, s3 and s4 compatible with the
symmetries of the system has the form

e2g exp

(
1

2
K ′

1 (s1s2 + s2s3 + s3s4 + s4s1)︸ ︷︷ ︸
NN

+K ′
2 (s1s3 + s2s4)︸ ︷︷ ︸

nNN

+K ′
3 (s1s2s3s4)︸ ︷︷ ︸

Q

)
,

where (NN) and (nNN) denote nearest neighbors and next-nearest neighbors and
(Q) represents squares. The last two expressions are equal for all configurations of
spins s1, s2, s3 and s3 if the following independent equations are satisfied:

(s1, s2, s3, s4) = (1,1,1,1): 2 cosh(4K)= e2ge2K ′
1+2K ′

2+K ′
3 ,

(s1, s2, s3, s4) = (1,−1,−1,−1): 2 cosh(2K)= e2ge−K ′
3,

(s1, s2, s3, s4) = (1,1,−1,−1): 2 = e2ge−2K ′
2+K ′

3 ,

(s1, s2, s3, s4) = (1,−1,1,−1): 2 = e2ge−2K ′
1+2K ′

2+K ′
3 .

Solving these equations for the new couplings, we obtain the relations

K ′
1 = 2K ′

2 =
1

4
log cosh(4K),

K ′
3 =

1

8
log cosh(4K)− 1

2
log cosh(2K), (11.15)

g = 1

16

(
log cosh(4K)+ log cosh(2K)+ 8 log 2

)
.
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We get such contributions from all spins on the open circles. Thereby a term like
exp(K ′

1s1s2/2) occurs in the sum over s6 as well. Denoting the spin configuration
on the coarse-grained lattice by ω′ we can write

Z(V,K)= Z′
(
V

2
,K ′

)
=

∑

ω′
e−(βH)′(ω′). (11.16)

The so-called Landau–Ginzburg–Wilson energy function

−(βH)′ = Vg +K ′
1

∑

NN

sx′sy′ +K ′
2

∑

nNN

sx′sy′ +K ′
3

∑

Q

sx′sy′su′sv′ , (11.17)

where x′, y′, u′, v′ are sites on the dilute lattice, is not of the same form as the energy
function of the microscopic system.

If we iterated the decimation without approximation, we would generate more
and more terms involving interactions between widely separated spins. To proceed
analytically one needs some sort of truncation. In a first attempt we could set the
coupling constants K ′

2 = K ′
3 equal to zero, but this approximation would be quite

insufficient. This becomes apparent by inspecting the fixed points which are simply
K1 = 0 and K1 =∞ as in the one-dimensional model. Thus we would not observe
any phase transition. A better approximation is to set K3 = 0 and to count next-
nearest neighbors as nearest neighbors. With this truncation the partition function
becomes

Z(V,K)= eVg
∑

ω′
exp

(
K ′ ∑

〈x′,y′〉
sx′sy′

)
, K ′ =K ′

1 +K ′
2. (11.18)

Inserting the results in (11.15) we find the renormalization group map

K →K ′(K)= 3

8
log cosh 4K, (11.19)

which is depicted in Fig. 11.5. The map has fixed points at K = 0,K =∞ and at

K∗ = 0.50698. (11.20)

This is reasonably close to the known critical point Kc = 0.4407. Actually the fixed
point is instable: starting at K �=K∗, the flow drives the system either to the high-
temperature fixed point at K = 0 or the low-temperature fixed point at K =∞.

11.2 Fixed Points

We now turn towards a more general discussion of the RG method. For this purpose
we consider a d-dimensional lattice model, characterized by its coupling constants

K = {KA|A⊂Λ} = (K1,K2, . . .), (11.21)
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Fig. 11.5 The fixed point of
the truncated block-spin
transformation (11.19). The
non-trivial fixed point at
K∗ = 0.50698 is unstable

where we enumerated the subsets of the lattice.1 The set of couplings should be
complete in the following sense: A RG transformation that substitutes bd micro-
scopic degrees of freedom on the lattice Λ by one degree of freedom on the coarser
lattice Λ′ leads to an energy function with the same kind of interactions as the en-
ergy function of the original system. Thus, starting with the energy function of the
form

H(ω)=−
∑

A⊂Λ
KAsA, sA =

∏

x∈A
sx, (11.22)

the renormalized energy function on Λ′ has the same form, up to an additive exten-
sive constant,

H(ω)→H ′(ω′)− Vg(K), H ′(ω′)=−
∑

A⊂Λ′
K ′
ASA, (11.23)

where A denotes the same set as in (11.21). We thereby assume a set {A} to exist
on the original lattice as well as on the diluted lattice. Furthermore we assume the
reduced degrees of freedom Sx′ to exhibit the same algebraic properties as the sx .

Note that the constant term Vg(K) in (11.23) occurs in all RG transformations.
Unfortunately, only simple models as the Ising chain may be described by a finite
number of couplings. However, we may assume the couplings KA corresponding to
long-range interactions are suppressed and thus may be neglected. Hence, in prac-
tice, we work with a finite number of coupling constants {K1, . . . ,Kn}. A dilution
of the system changes the couplings according to the renormalization group map

K ′
i =Ri(K1,K2, . . .), (11.24)

where the partition function remains unchanged, i.e.

e−F(V,K) =
∑

ω∈Ω
e−H(ω) = eVg(K)

∑

ω′∈Ω ′
e−H ′(ω′) = eVg(K)−F(V ′,K ′). (11.25)

1x ∈A may appear several times, similarly as in Sect. 8.6.
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Fig. 11.6 The fixed point K∗ has one relevant and one irrelevant direction

Now we assume that the thermodynamic limit V →∞ exists. Hence, the free en-
ergy densities of the two systems are related by the recursion relation

f (K)= b−df
(
K ′)− g(K), V = bdV ′ (11.26)

in the thermodynamic limit. This relation is quite familiar since it occurred in (11.5)
in connection with the Ising chain. We have already argued that a fixed point K∗ of
the RG transformation either defines a critical point of the system characterized by
a divergent correlation length ξc =∞ or belongs to a non-interacting system with
vanishing correlation length ξ = 0. The converse needs not be true, i.e. there may
exist critical points which are no fixed points.

Now let us consider a two-dimensional space of couplings (K1,K2), where we
denote the critical couplings by Kc = (K1c,K2c). The generic case as illustrated in
Fig. 11.6 shows a line of critical points, where K∗ lies on this curve. This may be
explained as follows: since we absorbed the temperature in the couplings, a change
of temperature in

(K1c,K2c)= (βJ1, βJ2)

is equivalent to a dilation in the space of coupling {Ki}. Thus, when we lower the
temperature then we move away from K = 0 on a ray with constant ratio K2/K1
and expect to find a critical point at some critical temperature Tc. This temperature
will depend on this ratio K2/K1 and when the ratio changes, then the point

(K1c,K2c)=
(
J1

Tc
,
J2

Tc

)

describes a curve in the (K1,K2)-plane. If we admit more couplings we expect to
find critical hyper-surfaces on which ξ =∞ instead of critical lines.

Let us now see how the properties of a statistical system are related to its critical
points, critical surfaces or fixed points. Some simple properties of the RG flow are:
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• Near the critical surface a RG trajectory moves away from the surface, since
ξ =∞ on the surface and every RG transformation reduces ξ .

• A RG transformation cannot change the phase of the system, since a dilution of
the system cannot generate order from disorder and vice versa.

• If we start above the critical temperature then the system should evolve to the free
fixed point, characterized by T =∞. In contrast, if we start below the critical
temperature then we should end up at the “ground state” fixed point T = 0.

• If the flow begins exactly on the critical surface then it stays on this surface, since
ξ =∞ implies ξ ′ = ξ/b=∞.

• It is the exception and not the rule that a critical point is a fixed point. In general
we expect a finite set of isolated fixed points. Only in lower-dimensional systems
there may be an infinite set of fixed points.

11.2.1 The Vicinity of a Fixed Point

Let K∗ = (K∗
1 ,K

∗
2 , . . .) be a fixed point of the RG transformation,

K∗ =R
(
K∗). (11.27)

To examine the RG flow in the vicinity of K∗ we write K =K∗ + δK and linearize
the flow around the fixed point,

K ′
i =K∗

i + δK ′
i =Ri

(
K∗
j + δKj

)=K∗
i +

∂Ri

δKj

∣
∣∣∣
K∗
δKj +O

(
δK2).

We read off the linearized RG transformation,

δK ′
i =

∑

j

M
j
i δKj , M

j
i =

∂Ri

∂Kj

∣∣
∣∣
K∗
. (11.28)

This linear map determines the flow in the vicinity of the critical point. It is charac-
terized by the eigenvalues and left-eigenvectors of the associated matrix M ,

∑

j

Φj
αM

i
j = λαΦ

i
α = byαΦi

α. (11.29)

If K∗ lies on a critical surface, then a subset of eigenvectors span the space tangen-
tial to the critical surface at K∗. Note that the eigenvalue λα has been substituted
by byα . This is justified, since we have

λα(b)λα(b)= λα
(
b2)

by virtue of the semigroup-property of the RG transformation. Thus every eigen-
value λα defines a critical exponent yα which will enter our discussion of scaling
relations below. We now consider the new variables

gα =
∑

i

Φi
αδKi. (11.30)
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These are projections of δK onto the eigenvectors Φα . We have

g′α =
∑

i

Φi
αδK

′
i =

∑

ij

Φi
αM

j
i δKj =

∑

j

byαΦαj δKj = byαgα. (11.31)

We now return to the recursion relation (11.26) for the free energy density. The con-
tribution g(K) thereby originates from integrating out the short-range fluctuations
and thus represents a smooth function. Thus the singular part of the free energy
density fulfills the homogeneous relation

fs(K)= b−dfs
(
K ′). (11.32)

We linearize the flow around the fixed point and obtain the following scaling behav-
ior for the singular part of the free energy density

fs
(
K∗ + δK

)= b−dfs
(
K∗ + δK ′). (11.33)

We now omit the argument K∗ and write

fs
(
K∗ + δK

)≡ fs(g1, g2, . . .), δK
(11.30)= δK(g).

Performing � iteration steps, we find

fs(g1, g2, . . .)= b−d�fs
(
b�y1g1, b

�y2g2, . . .
)
. (11.34)

Depending on the sign of the exponent yα , we observe a qualitatively different scal-
ing behavior:

• For yα > 0 the deviation gα increases continuously and the flow moves the point
K∗ + gα away from the fixed point K∗. This is called a relevant perturbation.

• For yα < 0 the deviation gα decreases and the flow carries the point K∗ + gα
towards the fixed point K∗. This corresponds to an irrelevant perturbation.

• Deviations with yα = 0 are called marginal.

Physical quantities corresponding to relevant perturbations are e.g. the temperature
or the (dimensionless) external field,

t = T − Tc

Tc
≡ g1 and h= g2. (11.35)

Let us slightly reinterpret these findings: The RG transformation acts on the space of
coupling constants or equivalently on the space of interactions parametrized by the
energy function. In general, this is an ∞-dimensional space. Let us now consider
again the general class of energy functions (11.22), i.e.

H =−
∑

A⊂Λ
KAsA ≡−

∑
KiOi. (11.36)

An expansion of the Hamiltonian around the fixed point, H =H ∗ + δH , yields

H ∗ = −
∑

K∗
i Oi, δH =−

∑
δKiOi =−

∑

α

gαQα. (11.37)

Applying the linearized RG transformation � times changes H according to
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H ∗ + δH →H ∗ −
∑

g′αQα →H ∗ −
∑

g′′αQα → ·· ·
→H ∗ −

∑

α

b�yαgαQα,

where the Qα are called scaling operators and the gα scaling fields. Operators with
positive yα are relevant, operators with yα < 0 are irrelevant and operators with
yα = 0 are marginal. The relevant operators of the Ising model are its energy H and
its average field

∑
sx .

11.2.2 Derivation of Scaling Laws

Let us assume that g1 = t and g2 = h in (11.35) are relevant couplings and g3, g4, . . .

are irrelevant ones. Moreover, we choose � such that

by1� = 1

t
or b� = t−1/y1 . (11.38)

Then the scaling relation (11.34) yields

fs
(
K∗ + δK

)≡ fs(t, h, g3, . . .)= td/y1fs

(
1,

h

ty2/y1
,

g3

ty3/y1
, . . .

)
. (11.39)

Similarly, setting b� = h−1/y2 we arrive at

fs(t, h, g3, . . .)= hd/y2fs

(
t

hy1/y2
,1,

g3

hy3/y2
, . . .

)
. (11.40)

Note that the arguments

gi

tyi/y1

t→0→ 0 and
gi

hyi/y2

h→0→ 0, i = 3,4, . . . (11.41)

of the singular part fs of the free energy density vanish at the fixed point, since the
exponents of t and h are negative.

Now we can relate the thermodynamic critical exponents to the exponents of the
linearized RG transformation by differentiating the singular part of the free energy
density with respect to the relevant couplings t and h. At this point it is useful to
collect the relevant thermodynamic quantities as introduced in Sect. 7.3:

magnetization: m(t,h)= 〈sx〉 = −∂f

∂h
, (11.42)

susceptibility: χ(t, h)= β
∑

x

〈s0sx〉c =−∂2f

∂h2
, (11.43)

inner energy density: u(t, h)= lim
Λ→Zd

1

V
〈H 〉 = ∂(βf )

∂β
, (11.44)

specific heat: c(t, h)= ∂u

∂T
=−β2 ∂u

∂β
=−T ∂2f

∂T 2
. (11.45)
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Their singular behavior is characterized by the critical exponents α,β, γ and δ:

c(t,0)∼E±|t |−α, m(t,0)∼ Btβ, (11.46)

χ(t,0)∼A±|t |−γ , m(0, h)∼ |h|−1/δsign(h). (11.47)

The correlation length and two-point function define the critical exponents η and ν,

correlation length: ξ−1 =− lim|x|→∞
1

|x| log〈s0sx〉c ∼ |t |ν, (11.48)

Green’s function: 〈s0sx〉 ∼ 1

|x|d−2+η . (11.49)

Since the specific heat is proportional to the second t-derivative of f we conclude

fs ∼ |t |2−α. (11.50)

A comparison with (11.39) immediately results in 2−α = d/y1. A similar reasoning
for the other derivatives of f yields further relations between the critical exponents
β,γ and δ and the relevant exponents y1 and y2. To relate ν and η to the relevant
exponents we must allow for an inhomogeneous external field h(x), similarly as in
the Ornstein–Zernike extension of Landau’s theory. Finally one ends up with the
following important relations between α,β, γ, δ, ν, η and y1, y2:

2− α = d

y1
, β = d − y2

y1
,

γ = 2y2 − d

y1
,

1

δ
= d − y2

y2
, (11.51)

ν = 1

y1
, d − 2+ η= 2(d − y2).

Since the six critical exponents only depend on the two relevant exponents y1 and
y2 and the dimension of the system we find the following scaling relations between
the critical exponents,

γ = ν(2− η) (Fisher),
α + 2β + γ = 2 (Rushbrooke),

γ = β(δ − 1) (Widom),
νd = 2− α (Josephson, “hyperscaling relation”).

(11.52)

The critical exponents of the two- and three dimensional Ising models and the three-
dimensional Heisenberg model are found in Table 11.1 As expected the scaling
relations are fulfilled. In d �= 4 they are not fulfilled for the mean field exponents in
the last row of Table 11.1.

The critical exponents do not depend on the microscopic details of the interac-
tions, since the correlation length diverges at the critical point. This universality
of the critical behaviour arises from the singular part of the free energy which is
independent of the (infinitely many) irrelevant couplings gi, i ≥ 3. The critical ex-
ponents of a system are fixed by the space-dimension, the number of components of
the order parameter and the symmetry of the interaction. Two models which share
these properties belong to the same universality class.
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Table 11.1 Critical exponents for the Ising model and the Heisenberg model

α β γ δ η ν

d = 2 Ising 0 1/8 7/4 15 1/4 1

d = 3 Ising 0.11 0.32 1.24 4.8 0.05 0.63

class. Heisenberg d = 3 −0.12 0.36 1.37 4.6 0.04 0.7

MFA, arbitrary d 0 1/2 1 3 0 1/2

Fig. 11.7 A blocking transformation which combines four microscopic spins to one block spin

11.3 Block-Spin Transformation

The Monte Carlo renormalization group (MCRG) method has been developed by
MA, SWENDSEN and others [13–15]. This powerful method is based on the block-
spin transformation which maps a microscopic system to a coarse-grained system.
It is a generalization of the previously considered decimation procedure. We present
the transformation for two-dimensional Ising-type models on a square lattice with
general energy function

βH =−
∑

A⊂Λ
KAsA, sA =

∏

x∈A
sx, sx ∈ {−1.1}, (11.53)

and subject to periodic boundary conditions. We absorb the inverse temperature β

in the couplings KA and we write H instead of βH .
We partition the lattice into blocks of size b2 and assign a block spin to the spins

in every block. Figure 11.7 shows a possible blocking with rescaling factor of b= 2.
Let us denote by x = (x1, x2) with xi ∈ {1, . . . ,N} the sites on a square lattice Λ.
Then a block consisting of b2 lattice points is mapped onto one lattice point x′ of
the coarse-grained lattice,

x′(x)= (
x′1(x1), x

′
2(x2)

)=
(

ceil
x1

b
, ceil

x2

b

)
, (11.54)

where ceil(x) is the smallest integer not less than x. If b = 2 then all sites (1,1),
(1,2), (2,1) and (2,2) are mapped onto the site (1,1) on the diluted lattice Λ′.
Thereby the lattice shrinks by the factor 1/b.
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A block-spin transformation maps a microscopic configuration ω = {sx} with
a certain probability onto a configuration ω′ = {Sx′ } on the coarser lattice and is
characterized by its kernel T (ω′,ω) according to

ω′ =
∑

ω∈Ω
T
(
ω′,ω

)
, (11.55)

where T (ω′,ω) is the probability that ω is mapped to ω′. This blocking kernel
should satisfy the conditions

0 ≤ T
(
ω′,ω

)≤ 1 and
∑

ω′
T
(
ω′,ω

)= 1. (11.56)

The Boltzmann factors of the microscopic configurations determine the Boltzmann
factors of the block-spin configurations via

e−H ′(ω′) =
∑

ω∈Ω
T
(
ω′,ω

)
e−H(ω). (11.57)

The previously considered decimation of the Ising chain is a particular blocking
transformation with kernel

T
(
ω′,ω

)=
∏

x′∈Λ′
δ(s2x′ , Sx′),

i.e. two neighboring spins are mapped to one block spin. Thus, decimation is a
particular blocking, where all but one spin from each block are discarded. The block
spin is then equal to the one spin left.

Assuming that the energy of the block spins may be written again in the form

H ′(ω′)=−
∑

A′⊂Λ′
KA′SA′ (11.58)

we can derive a recursion relation for the coupling constants. Because of the second
relation in (11.56) the partition function of the blocked system is equal to that of the
microscopic system,

Z′
H ′ =

∑

ω′∈Ω ′
e−H ′(ω′) =

∑

ω′∈Ω ′

∑

ω∈Ω
T
(
ω′,ω

)
e−H(ω) =

∑

ω∈Ω
e−H(ω) = ZH . (11.59)

The connected correlation functions of the sA are obtained by differentiating logZ
with respect to the corresponding couplings. for example

〈sA〉 = ∂ logZ

∂KA

,

〈sA; sB〉 ≡ 〈sAsB〉 − 〈sA〉〈sB〉 = ∂〈sA〉
∂KB

.

(11.60)

The correlation functions of the blocked system are given by

〈SA′ 〉′ ≡
∑

ω′ SA′e−H ′(ω′)
∑

ω′ e−H ′(ω′) =
∑

ω′ SA′
∑

ω T (ω
′,ω)e−H(ω)

∑
ω e−H(ω)

. (11.61)
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The last relation shows how one can calculate correlations of the block spins from
the microscopic ensemble. To proceed we introduce the derivative of 〈SA′ 〉′ in the
blocked system with respect to the coupling constant KB of the microscopic system,

TA′B = ∂〈SA′ 〉′
∂KB

= ∂

∂KB

∑
ω′ SA′

∑
ω T (ω

′,ω)e−H(ω)

∑
ω e−H(ω)

=
∑

ω{
∑

ω′ SA′T (ω′,ω)}sBe−H(ω)

∑
ω e−H(ω)

− 〈SA′ 〉′〈sB〉.

This yields

TA′B =
〈
sB

∑

ω′
SA′T

(
ω′,ω

)〉− 〈SA′ 〉′〈sB〉, (11.62)

and with the help of (11.61) all expectation values on the right hand side can be
calculated from the microscopic ensemble and the blocking kernel. We use the chain
rule to find the alternative expression

TA′B = ∂〈SA′ 〉′
∂KB

=
∑

C′

∂〈SA′ 〉′
∂KC′

∂KC′

∂KB

=
∑

C′
〈SA′ ;SC′ 〉′ ∂KC′

∂KB

. (11.63)

Again the connected correlation functions on the right hand side can be extracted
from the microscopic ensemble. Thus, from the two expressions (11.62) and (11.63)
for TA′B we can read off how the couplings of the blocked system vary when we vary
the microscopic couplings.

In order to illustrate the MCRG transformation we return to the two-dimensional
Ising model and combine four spins to one block spin as indicated in Fig. 11.7. For
the blocking kernel we choose the majority rule: Four spins {sx} are mapped onto
one block spin Sx′ according to

T
(
ω′,ω

)=
∏

x′∈Λ′
t

(
Sx′ ,

∑

x∈x′
sx

)
(11.64)

with
∑

sx > 0 �⇒ Sx′ = 1 with probability 1,
∑

sx < 0 �⇒ Sx′ = −1 with probability 1,
∑

sx = 0 �⇒
{
Sx′ = +1 with probability 1/2,
Sx′ = −1 with probability 1/2.

(11.65)

Let us determine the RG transformation for the Ising model without external field
on a small 4×4 lattice. The 216 = 65536 microscopic configurations are easily gen-
erated such that (11.57) allows for a direct calculation of the energy of the coarse-
grained system. In two dimensions H ′ has not the same functional form as H , but on
the blocked 2× 2 lattice there are only three different types of interactions: between
nearest neighbors, next-nearest neighbors and all four spins (for simplicity we drop
the prime at the couplings)
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Table 11.2 Grouping of the blocked configurations on the 2×2 lattice into classes. Configurations
in the same class have equal weight

Class Configurations −H ′

C1
++ −−
++ −− 8K1 + 8K2 + 4K3 + 4K4

C2
−+ +− ++ ++ +− −+ −− −−
++ ++ −+ +− −− −− +− −+ −4K3 + 4K4

C3
++ +− −− −+
−− +− ++ −+ −8K2 + 4K3 + 4K4

C4
+− −+
−+ +− −8K1 + 8K2 + 4K3 + 4K4

H ′ = −K1

∑

x′
Sx′(Sx′+(1,0) + Sx′+(0,1))

−K2

∑

x′
Sx′(Sx′+(1,1) + Sx′+(1,−1))

−K3

∑

x′
Sx′Sx′+(1,0)Sx′+(0,1)Sx′+(1,1)

−K4

∑

x′
1. (11.66)

Note that we deliberately over-counted, since, for instance, the two terms in the
second row, which are identical on a 2 × 2 lattice, are different on larger lattices.
The 24 = 16 configurations on the coarse-grained lattice fall into one of the four
classes listed in Table 11.2, and members of the same class share the same Boltz-
mann factor. Hence we end up with four equations for the couplings K1,K2,K3,K4

in Eq. (11.66). In each class we pick the first representative and obtain the equations

e−H ′(ω′i ) =
∑

ω

T
(
ω′
i ,ω

)
e−H(ω) ≡ eci , i = 1,2,3,4. (11.67)

From Table 11.2 we can find the couplings of block spins in terms of these constants
as follows:

K1 = 1

16
(c1 − c4),

K2 = 1

32
(c1 − 2c3 + c4),

K3 = 1

32
(c1 − 4c2 + 2c3 + c4),

K4 = 1

32
(c1 + 4c2 + 2c3 + c4).
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Fig. 11.8 Renormalization group flow in the (K1,K2)-plane. Besides the trivial high-temperature
fixed point at K = 0 we find a non-trivial fixed point. The intersection of the critical surface with
the K1-axis yields the critical temperature of the Ising model with nearest neighbor interaction

The iteration of the RG transformation is then performed by using the couplings
Ki again on a 4 × 4 lattice. Figure 11.8 shows the projection of some renormaliza-
tion group trajectories onto the K1,K2-plane. These trajectories are obtained with
the program rengroupis2d.c on p. 252 and is based on the discussion found
at http://www-zeuthen.desy.de/~hasenbus/lecture.html. Points in the space of cou-
plings that flow into the fixed point define the critical surface, and the intersection
of this surface with the line (K1,0,0) yields the critical coupling of the Ising model
with nearest-neighbor interaction. Besides the trivial high-temperature fixed point
at K∗ = 0 we find a non-trivial fixed point at

K∗ = (
K∗

1 ,K
∗
2 ,K

∗
3

)= (0.302796,0.104246,0.023298). (11.68)

The numerical value of the critical coupling of the 2d Ising model with nearest-
neighbor interactions lies at

K
(1)
1,c ≈ 0.458961,

and this value can be compared with the exact result 1
2 log(1 +√

2) ≈ 0.4407. In
order to obtain the critical exponents we examine the linearized RG transformation
close to the fixed point K∗, i.e. the matrix

Tab = ∂K ′
a

∂Kb

∣
∣∣∣
K∗
. (11.69)

The corresponding difference quotients as calculated with rengroupis2d.c read

T =
⎛

⎝
1.37342 0.50762 0.06027
1.66800 0.79017 0.00564
0.55608 0.22621 0.20882

⎞

⎠ . (11.70)

http://www-zeuthen.desy.de/~hasenbus/lecture.html
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Next we have to diagonalize this non-symmetric matrix in order to determine the
critical exponents:

∑

a

Φi
aTab = λiΦi

b.

The eigenvalues and left-eigenvectors are

λ1 = 2.0658, Φ1 = (0.9268,0.3743,0.0312),

λ2 = 0.1890, Φ2 = (0.3027,0.1010,−0.9477), (11.71)

λ3 = 0.1176, Φ3 = (−0.7695,0.4185,0.4825),

and yield the following exponents yi in λi = byi :

1

ν
= y1 ≈ 1.0467, y2 ≈−2.4037, y3 ≈−3.0880. (11.72)

Without external field the Ising model has only one relevant coupling t and infinitely
many irrelevant couplings with negative exponents. The truncated model has just
two irrelevant couplings. With h = 0 we may confirm only the relation ν = 1/y1
in (11.51). We see that the result (11.72) for ν approximates the exact value ν = 1
rather well in contrast to the mean field approximation, which predicts νmf = 0.5.

11.4 Continuum Limit of Non-interacting Scalar Fields

We begin our discussion of the continuum limit by reconsidering the simple free
scalar field theory. For that purpose we introduce explicitly a lattice spacing a (ear-
lier denoted by ε) and study the continuum limit a → 0 of the two-point function.
Thereby we should distinguish between sites, parameters and fields of the system
on the unit lattice and on the lattice with lattice spacing a. We use the following
conventions: n, k and mL refer to the dimensionless sites, momenta and mass on
the unit lattice and x, p and m to the corresponding dimensionful quantities on the
lattice with spacing a. We begin with the Fourier representation of the two-point
function on the unit lattice,

GL(n)= 1

(2π)d

∫ π

−π
ddk

eikn

m2
L + k̂2

, k̂μ = 2 sin
kμ

2
. (11.73)

Setting n= x/a, k = pa and mL = am we obtain

GL(x)=
(

a

2π

)d 1

a2

∫

B

ddp
eipx

m2 + p̂2
, p̂μ = 2

a
sin

apμ

2
, (11.74)

where the momentum is inside the Brillouin zone B = [−π/a,π/a]d which be-
comes Rd in the continuum limit. The Green function satisfies the difference equa-
tion

−
∑

μ

(
GL(x + aeμ)− 2GL(x)+GL(x − aeμ)

)+ (am)2GL(x)= δx,0.
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The rescaled dimensionful two-point function

Ga(x)= 1

ad−2
GL(x)= 1

(2π)d

∫

B

ddp
eipx

m2 + p̂2
(11.75)

satisfies the rescaled difference equation

−
∑

μ

1

a2

(
Ga(x + aeμ)− 2Ga(x)+Ga(x − aeμ)

)+m2Ga(x)= 1

ad
δx,0.

In the continuum limit the right hand side approaches the Dirac delta function,

1

ad
δx,0

a→0→ δ(x), (11.76)

such that the difference equation turns into the linear differential equation
(−Δ+m2)G(x)= δd(x), where lim

a→0
Ga =G. (11.77)

It is just the defining equation for the Green function of the operator −Δ+m2 on the
Euclidean space R

d . In the same limit the Fourier representation (11.75) becomes

1

(2π)d

∫

Rd

ddp
eipx

m2 + p2
. (11.78)

Several remarks are in order at this point:

• The rescaling of the two-point function in (11.75) corresponds to a field renor-
malization. The mass parameter mL and the lattice field φL in the lattice action

S = 1

2

∑

〈n,m〉

(
φL(m)− φL(n)

)2 + m2
L

2

∑

n

φ2
L(n)

= 1

2

∑

x∈(aZ)d

ad

ad−2

(
d∑

μ=1

(φL(x + aeμ)− φL(x))
2

a2
+ m2

L

a2
φ2

L(x)

)

(11.79)

are dimensionless. In the continuum limit the difference quotients become partial
derivatives and, if we rescale the field according to

φL(n)→ φ(x)= 1

a(d−2)/2
φL(an), (11.80)

then the Riemann sum turns into an integral over Rd , such that the lattice action
approaches the continuum action of the Klein–Gordon field

S = 1

2

∫
ddx

((∇φ(x),∇φ(x))+m2φ2(x)
)
, where m= mL

a
.

In d space-time dimensions a scalar field has mass-dimension [mass](d−2)/2 such
that the naive rescaling (11.80) just restores the correct mass-dimension of φ. The
rescaling implies a rescaling of the k-point function

GL(n1, . . . , nk)→GL(x1, . . . , xk)= a−k(d−2)/2G(an1, . . . , ank). (11.81)
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• For large arguments the two-point function on the lattice and in the continuum
fall off exponentially,

GL(n)
mL|n|�1→ e−mL|n|, G(x)

m|x|�1→ e−m|x|. (11.82)

• The lattice Green function becomes approximately rotationally invariant for large
arguments |n| � 1/mL and this is needed to obtain an SO(d)-invariant correlation
function in the continuum limit. Hence, although the lattice regularization breaks
the rotation invariance, the rotational symmetry is restored in the continuum limit.

11.4.1 Correlation Length for Interacting Systems

For interacting theories the correlation length on a lattice or in the continuum is
intimately related to a mass parameter, similarly as for a non-interacting theory. To
explain this connection we recall the definition of a mass and a correlation length:

1. The dimensionless bare mass mL directly appears in the lattice action.
2. The dimensionless correlation length ξL is defined via the two-point function

1

ξL
=− lim|n|→∞

logGL(n)

|n| . (11.83)

For the free field we simply have ξL = 1/mL, but in general ξL depends on all
bare couplings of the lattice theory.

3. A particle described by the field φ is characterized by a dimensional physical
mass m as measured in experiments.

4. The choice of bare parameters determines the correlation length ξL in lattice units
from which we extract the physical mass according to

m= 1

ξ
= 1

aξL(mL, . . .)
. (11.84)

Thus, the lattice spacing a depends on the fixed physical mass m, the dimension-
less mass parameter mL and possible further bare couplings.

We may interpret the connection between the bare and the physical mass as follows:
Firstly, we may set the lattice spacing a equal to some arbitrarily chosen physical
distance. If φ describes a particle of mass m then the product ξL = 1/am is iden-
tified with its Compton wavelength in units of a. When we specify a and m then
we fix the bare parameter mL(ξL) provided the remaining bare parameters are spec-
ified as well. A change of the (unobservable) lattice spacing a is compensated by a
change of the (unobservable) bare parameter mL whereby physical quantities remain
unchanged. Thus the trajectory mL(a) represents a curve of constant physics.

To reach the continuum limit a→ 0 we should adjust the free lattice parameters
such that the correlation length ξL is very large compared to the lattice spacing or
equivalently that ξ � a. This means that we perform the limits ξL →∞ or mL → 0
so that the dimensional correlation functions have a well-defined continuum limit
characterized by a correlation length ξ > 0. More generally, for each free lattice bare
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parameter we identify a physical quantity (mass, vacuum expectation value, decay
constant, . . . ) which should be reached in the continuum limit. The a-dependence of
the bare parameters can be fixed by the requirement that the physical quantities do
not change. This step also relates the lattice spacing to a physical scale.

In MC simulations one typically chooses a set of bare parameters and extracts the
corresponding lattice spacing for a prescribed physical mass m according to (11.84).
Thereby the correlation length should be much larger than the lattice spacing in
order to avoid lattice effects and much smaller than the volume in order to avoid
finite volume effects. This means that the inequality

1 ) ξL )N (11.85)

should always be satisfied. Currently, high performance computer clusters admit
simulations of scalar field theories on lattices with up to 1284 sites.

11.5 Continuum Limit of Spin Models

In the vicinity of a critical point (curve, surface) of a general spin model the cor-
relation length ξL becomes large. Thus, near criticality the correlations extend over
very many lattice spacings such that the discreteness of the lattice becomes irrele-
vant. This is the reason why certain lattice models at criticality can be interpreted as
Euclidean quantum field theories or a quantum field theories at finite temperature.
At finite temperature we perform the limit a→ 0 such that

T = 1

aNd

(11.86)

is fixed. Away from criticality the lattice model is viewed as lattice regularized the-
ory. Performing a continuum limit means then that we approach a critical point along
a particular curve in the space of couplings. Close to a critical point the correlation
length in units of a diverges as

ξ

a
= ξL = κ(βc − β)−ν (11.87)

with critical exponent ν. For a fixed correlation length this equation determines the
lattice spacing a = a(β) and the continuum limit is reached for β → βc with ξ being
fixed. For a given lattice spacing the dimensionless parameter β can be expressed
in terms of the dimensional length ξ . The physical mechanism that transforms a di-
mensionless parameter into a dimensional parameter is called dimensional transmu-
tation. It is observed in many relevant field theories with dimensionless couplings.

We consider a correlation function with long-range behavior
〈
O(n)O(m)

〉∼ e−mLO |n−m|, (11.88)

wherein mLO acts as screening parameter. Since the distance |n−m| is measured
in units of the lattice spacing, the correlation function yields the screening mass in
units of a(β). Universality implies that near a critical point

mOa(β)=mLO = κO(βc − β)ν, β ↑ βc, (11.89)
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such that the product mOξ attains a constant value in the vicinity of the critical
point,

mOξ = κmκ. (11.90)

The dimensionless numbers κ and κm are accessible to numerical simulations. Thus
we can “measure” the screening mass mO in units of the free parameter 1/ξ .

11.6 Programs for Chap. 11

The program rengroupis2d.c computes the trajectories of the block-spin trans-
formation of the 2d Ising model on a 4× 4 lattice. The blocking kernel is based on
the majority rule with block-spin Hamiltonian (11.66). The trajectories in Fig. 11.8
were computed with this program. When one runs the program it first wants to know
an initial K1-value and then computes ig points on the renormalization group tra-
jectory beginning at (K1,0,0,0). One also may change the initial couplings in line
10 of the code. With a fine tuning we localized the non-trivial fixed point K∗ listed
in lines 11 and 12. The two critical points in Fig. 11.8 are localized at

K(1)
c = (0.4589605276967553,0,0,0),

K(2)
c = (0.106770494,0.3,0,0).

To compute the critical exponents one needs to set ig=1 in line 21 and uncomment
the lines beginning with X.

1 /* Program rengroupis2d.c */
2 /* computes trajectories of MC_RG transformation*/
3 /* numerically. Blocking according to majority rule.*/
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <math.h>
7 #include <string.h>
8 #include "constrenising2.h"
9 #include "stdrenising.h"

10 double k1,k2=0.3,k3=0,k4=0;
11 /*X double k1=0.30279597088,k2=0.10424577852;*/
12 /*X double k3=0.02329831163,k4=2.66479130426;*/
13 int main(void){
14 /*X k1o=k1;k2o=k2;k3o=k3;*/
15 /*X puts("delta = ");scanf("%lf",&delta);*/
16 /*X k1=k1+delta;*/
17 conf=1<<V; /* number of configurations */
18 neighbors();
19 puts("K1 = ");scanf("%lf",&k1);
20 printf("(%1.4f, %1.4f)",k1,k2);
21 for (ig=0;ig<20;ig++){
22 c1=0;c2=0;c3=0;c4=0;
23 for (i=0;i<conf;i++){
24 /* binary code of i = configurations */
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25 for (p=0;p<V;p++){
26 s[p]=(i>>p)%2;s[p]=2*s[p]-1;
27 };
28 h1=0;h2=0;h3=0;
29 for (p=0;p<V;p++){
30 h1=h1+s[p]*(s[nr[p]]+s[no[p]]);
31 h2=h2+s[p]*(s[nro[p]]+s[nru[p]]);
32 h3=h3+s[p]*s[nr[p]]*s[no[p]]*s[nro[p]];
33 };
34 boltz=exp(k1*h1+k2*h2+k3*h3);
35 block spin(s);
36 for (p=0;p<VB;p++){
37 kc1[p]=bs[p]*kl1[p];
38 kc2[p]=bs[p]*kl2[p];
39 kc3[p]=bs[p]*kl3[p];
40 kc4[p]=bs[p]*kl4[p];
41 };
42 if ((kc1[0]>=0)&&(kc1[1]>=0)&&(kc1[2]>=0)&&(kc1[3]>=0)){
43 if (kc1[0]*kc1[1]*kc1[2]*kc1[3]==0) c1=c1+0.5*boltz;
44 else c1=c1+boltz;}
45 if ((kc2[0]>=0)&&(kc2[1]>=0)&&(kc2[2]>=0)&&(kc2[3]>=0)){
46 if (kc2[0]*kc2[1]*kc2[2]*kc2[3]==0) c2=c2+0.5*boltz;
47 else c2=c2+boltz;}
48 if ((kc3[0]>=0)&&(kc3[1]>=0)&&(kc3[2]>=0)&&(kc3[3]>=0)){
49 if (kc3[0]*kc3[1]*kc3[2]*kc3[3]==0) c3=c3+0.5*boltz;
50 else c3=c3+boltz;}
51 if ((kc4[0]>=0)&&(kc4[1]>=0)&&(kc4[2]>=0)&&(kc4[3]>=0)){
52 if (kc4[0]*kc4[1]*kc4[2]*kc4[3]==0) c4=c4+0.5*boltz;
53 else c4=c4+boltz;}
54 };
55 l1=log(c1);l2=log(c2);l3=log(c3);l4=log(c4);
56 k1=(l1-l4)/16;
57 k2=(l1-2*l3+l4)/32;
58 k3=(l1-4*l2+2*l3+l4)/32;
59 k4=(l1+4*l2+2*l3+l4)/32;
60 printf("(%1.4f,%1.4f)",k1,k2);
61 };
62 /*X printf("[%1.8f,%1.8f,%1.8f]\n",*/
63 /*X (k1-k1o)/delta,(k2-k2o)/delta,(k3-k3o)/delta);*/
64 printf("\n");
65 return 0;
66 }

The following header-file defines the constants and variables. The arrays kl1[VB],
. . . represent the four distinct classes of configurations on the blocked lattice.

1 /* header-file constrenising2.h*/
2 #define N 4 /* lattice length*/
3 #define V (N*N) /* number of lattice points*/
4 #define VB (V/4) /* volume of blocked lattice*/
5 short x,y,xm,xp,ym,yp;
6 short s[V],nr[V],no[V],nro[V],nru[V];
7 short bs[VB],kc1[VB],kc2[VB],kc3[VB],kc4[VB];
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8 short kl1[VB]={1,1,1,1},kl2[VB]={1,1,-1,1};
9 short kl3[VB]={-1,-1,1,1},kl4[VB]={-1,1,1,-1};

10 unsigned int ig,i,il,j,jl,conf;
11 unsigned short p,q;
12 double k1o,k2o,k3o,delta,c1,c2,c3,c4,l1,l2,l3,l4,boltz;
13 int h1,h2,h3;

The header-file stdrenising.h determines the nearest neighbors and next-
nearest neighbors of a given lattice point and provides the block-spin configuration
bs[VB] of a given spin configuration s[V ].

1 /* header-file stdrenising.h */
2 /* provides (next-)nearest neighbours and block spins */
3 void neighbors(void){
4 for (il=0;il<V;il++){
5 y=il/N;x=il-y*N;
6 xp=x+1,yp=y+1,ym=y-1;
7 nr[il]=y*N+xp%N;
8 no[il]=(yp%N)*N+x;
9 nro[il]=(yp%N)*N+xp%N;

10 nru[il]=((ym+N)%N)*N+xp%N;
11 };
12 }
13 void blockspin(short *s)
14 {
15 for (il=0;il<VB;il++){
16 p=(2*il)/N;jl=p*N+2*il;
17 bs[il]=s[jl]+s[jl+1]+s[jl+N]+s[jl+N+1];
18 };
19 }

11.7 Problems

11.1 (Scaling relations) Starting from the scaling relation for the singular part of
the free energy,

fs(t, h)∼ b−dfs
(
by1 t, by2h

)
,

derive the four relations in (11.51) which contain α,β, γ and δ.

11.2 (Decimation for spin-1 Ising chain) Generalize the decimation procedure to
the spin-1 Ising chain with energy function

H =−J
∑

x

sxsx+s −
∑

x

C, sx =±1,0.
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New interactions are generated by the decimation. Show that if all possible even
interactions between nearest neighbors are included in the energy function,

H =−J
∑

x

sxsx+1 −K
∑

x

s2
xs

2
x+1 −D

∑

x

s2
x −

∑

x

D

a set of consistent recursion equations for the couplings is obtained. The recursion
equations take a simple form in terms of the parameters

x = e−β(J+K+D/2), y = e−2βJ and z= e−β(J+K+D).

Study the trajectories of the renormalization group transformation.

11.3 (Decimation of 2d Ising model) Rewrite the program rengroupis2d.c on
p. 252 by using the decimation procedure inplace of the majority rule to define the
blocking kernel. Calculate the couplings K∗

1 ,K
∗
2 ,K

∗
3 ,K

∗
4 at the non-trivial fixed

point and the corresponding critical exponents. Compare with the flow obtained
with the majority rule and depicted in Fig. 11.8.
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Chapter 12
Functional Renormalization Group

The functional renormalization group (FRG) is a particular implementation of the
renormalization group concept which combines the functional methods of quantum
field theory with the renormalization group idea of KENNETH WILSON. It interpo-
lates smoothly between the known microscopic laws and the complex macroscopic
phenomena in physical systems. It is a momentum-space implementation of the
renormalization group idea and can be formulated directly for a continuum field
theory—no lattice regularization is required. In most approaches one uses a scale-
dependent Schwinger functional or scale-dependent effective action. The scale pa-
rameter acts similarly as an adjustable screw of a microscope. For large values of
a momentum scale k or equivalently for a high resolution of the microscope one
starts with the known microscopic laws. With decreasing scale k or equivalently
with decreasing resolution of the microscope one moves to a coarse-grained picture
adequate for macroscopic phenomena. The flow from microscopic to macroscopic
scales is given by a conceptionally simple but technically demanding flow equation
for scale dependent functionals. A priori the method is non-perturbative and does
not rely on an expansion in a small coupling constant.

The flow of the scale-dependent Schwinger functional Wk[j ] is determined by
the Wilson–Polchinski functional renormalization group equation. Actually the flow
equations used by K. WILSON [1] with a specific cutoff procedure (the incomplete
integration) is equivalent to the equation of J. POLCHINSKI [2] containing an arbi-
trary cutoff function, as was observed in [3].

In this chapter we will use the flow equation for the scale-dependent effective
action Γk[ϕ]. Apart from a cutoff term it is just the Legendre transform of the scale-
dependent Schwinger functional. The flow of Γk from microscopic to macroscopic
scales is determined by the flow equation [4] due to C. WETTERICH. The flow in-
terpolates between the classical action S[ϕ] and the full effective action Γ [ϕ] is de-
picted in Fig. 12.1. To actually calculate Γk one incorporates quantum fluctuations
between a momentum scale k and a large cutoff scale Λ. For large k near the cut-
off one should recover the classical action S[ϕ]. With decreasing scale long-range
effects are included and for k→ 0 one recovers the complete effective action con-
taining quantum fluctuations on all momentum scales. In recent years the functional

A. Wipf, Statistical Approach to Quantum Field Theory, Lecture Notes in Physics 864,
DOI 10.1007/978-3-642-33105-3_12, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 12.1 Sketch of the
renormalization group flow in
theory space. Each axis labels
a different operator which
may enter the effective action,
e.g. ϕ2, ϕ4, (∂ϕ)2, etc. For a
given initial condition at the
cutoff scale Λ the functional
renormalization group
equation determines the flow
of Γk . Different regulator
functions Rk lead to different
trajectories in theory space,
but in principle all trajectories
end at the full quantum
effective action Γ

renormalization group has been applied to many physical systems of interest: in
particle physics to the theory of strong interaction, the electroweak phase transition
and the gauge hierarchy problem, in gravity to the asymptotic safety scenario and
in condensed matter theory to a unified description of classical bosons, the Hubbard
model, disordered systems, liquid He4, frustrated magnets, nucleation processes,
superconductivity, and non equilibrium systems. In nuclear physics it has been ap-
plied to effective models and the equation of state of nuclear matter, and, finally,
in atomic physics to investigate ultra-cold atoms. Useful reviews on various aspects
and applications of the functional renormalization group method are contained in
[5–11].

12.1 Scale-Dependent Functionals

To find an effective average action we begin with the generating functional of the
Euclidean n-point correlation functions

Z[j ] =
∫

Dφe−S[φ]+(j,φ), (j,φ)=
∫

ddxj (x)φ(x). (12.1)

Its logarithm defines the Schwinger functional W [j ] = logZ[j ] which generates all
connected correlation functions. The Legendre transform of W [j ] is the effective
action

Γ [ϕ] = (j,ϕ)−W [j ] with ϕ(x)= δW [j ]
δj (x)

(12.2)

which generates the one-particle irreducible correlation functions. The last equation
in (12.2) determines j [ϕ] which must be inserted into the right hand side of the first
equation. The functional Γ encodes all properties of the underlying quantum field
theory in a most economic way.
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In order to introduce scale-dependent functionals we add a scale-dependent IR-
cutoff term �Sk to the classical action in the functional integral (12.1) and obtain
the scale-dependent generating functional

Zk[j ] =
∫

Dφe−S[φ]+(j,φ)−�Sk[φ]. (12.3)

The corresponding scale-dependent Schwinger functional Wk[j ] is given by

Wk[j ] = logZk[j ]. (12.4)

As regulator we choose a quadratic functional with a momentum-dependent mass,

�Sk[φ] = 1

2

∫
ddp

(2π)d
φ∗(p)Rk(p)φ(p)≡ 1

2

∫

p

φ∗(p)Rk(p)φ(p), (12.5)

such that the flow equation will have a one-loop structure. We impose the following
natural conditions on the cutoff function Rk(p):

• For k → 0 and fixed momentum p the function should vanish such that we re-
cover the conventional effective action for k→ 0. Hence we demand

Rk(p)
k→0−→ 0 for fixed p. (12.6)

• When k approaches the large cutoff scale Λ then we should recover the classical
theory. With the help of the saddle point approximation one shows that the scale-
dependent effective action Γk→Λ defined below tends to the classical action if

Rk
k→Λ−→∞. (12.7)

• The cutoff function must regularize the theory in the IR, and this is the case if

Rk(p) > 0 for p→ 0. (12.8)

In many cases one demands Rk(p) −→ k2 for small momenta p and in addition
sends the cutoff to infinity. Possible cut-offs are

the exponential regulator: Rk(p)= p2

ep2/k2 − 1
, (12.9)

the optimized regulator: Rk(p)=
(
k2 − p2)θ

(
k2 − p2), (12.10)

the quartic regulator: Rk(p)= k4/p2, (12.11)

the sharp regulator: Rk(p)= p2

θ(k2 − p2)
− p2, (12.12)

the Callan–Symanzik regulator: Rk(p)= k2. (12.13)

The exponential cutoff function and its derivative are plotted in Fig. 12.2.
Similarly as for the conventional effective action one introduces the average field

of the cutoff theory with external source,

ϕ(x)= δWk[j ]
δj (x)

. (12.14)
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Fig. 12.2 Plots of the
exponential cutoff function
Rk(p

2) and its derivative
k∂kRk(p

2). The cutoff
function vanishes for k→ 0
and fixed p2, it becomes large
for k→∞ and it is positive
for small arguments p2

Note that for a fixed source the average field depends on the cutoff function and vice
versa for a fixed average field the source depends on the cutoff function. Next we
perform a modified Legendre transformation and define the scale-dependent effec-
tive action

Γk[ϕ] = (j,ϕ)−Wk[j ] −�Sk[ϕ]. (12.15)

Here it is understood that (12.14) has been solved for j = j [ϕ] and the solution is
used on the right hand side. Note that (12.15) is not the Legendre transform of Wk[j ]
because of the additional term �Sk and hence does not need to be convex. But for
k→ 0 the additional term vanishes and Γk→0 must become convex. Now we vary
the effective average action with respect to ϕ to derive its equation of motion for the
average field,

δΓk

δϕ(x)
=

∫
δj (y)

δϕ(x)
ϕ(y)+ j (x)−

∫
δWk[j ]
δj (y)

δj (y)

δϕ(x)
− δ�Sk[ϕ]

δϕ(x)
.

With (12.14) the first term on the right hand side cancels against the third term and

δΓk

δϕ(x)
= j (x)− δ

δϕ(x)
�Sk[ϕ] = j (x)− (Rkϕ)(x). (12.16)

12.2 Derivation of the Flow Equation

Now we derive the flow equation for the scale-dependent effective action. Its argu-
ment ϕ is kept fixed such that its conjugated current defined in (12.16) depends on
the scale. Differentiating Γk in (12.15) results in

∂kΓk =
∫

ddx ∂kj (x)ϕ(x)− ∂kWk[j ] −
∫

∂Wk[j ]
∂j (x)

∂kj (x)− ∂k�Sk[ϕ],

where the variation of Wk yields two contributions: the second term on the right
hand side comes from the scale dependence of the parameters in Wk and the third
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term from the scale dependence of its argument j . Hence, in the partial derivative
∂kWk[j ] one varies the parameters and not the argument. With (12.14) the first and
third term cancel and

∂kΓk =−∂kWk[j ] − ∂k�Sk[ϕ]
= −∂kWk[j ] − 1

2

∫
ddx ddy ϕ(x)∂kRk(x, y)ϕ(y). (12.17)

Clearly, the partial derivative of Wk in (12.4) is given by

∂kWk[j ] = −1

2

∫
ddx ddy

〈
φ(x)∂kRk(x, y)φ(y)

〉
k
,

and it relates to the connected two-point function

G
(2)
k (x, y)≡ δ2Wk[j ]

δj (x)δj (y)
= 〈

φ(x)φ(y)
〉
k
− ϕ(x)ϕ(y) (12.18)

as follows:

∂kWk[j ] = −1

2

∫
ddx ddy ∂kRk(x, y)G

(2)
k (y, x)− ∂k�Sk[ϕ]

= −1

2
tr
(
∂kRkG

(2)
k

)− ∂k�Sk[ϕ]. (12.19)

Now we insert this simple result into the flow equation (12.17) and find

∂kΓk = 1

2

∫
ddx ddy ∂kRk(x, y)G

(2)
k (y, x). (12.20)

It is known that the second functional derivatives of a convex functional and its Leg-
endre transform define two operators which are inverses of each other, see Eq. (5.58)
on p. 89. But since Γk is only the modified Legendre transform of Wk we must first
calculate the corrections to the quoted result. With

ϕ(x)= δWk[j ]
δj (x)

and j (x)= δΓk

δϕ(x)
+

∫
ddy Rk(x, y)ϕ(y)

we find the following relation between the second derivatives:

δ(x − y)=
∫

ddz
δϕ(x)

δj (z)

δj (z)

δϕ(y)
=

∫
ddzG(2)

k (x, z)
{
Γ
(2)
k +Rk

}
(z, y). (12.21)

Between the curly brackets there appears the second functional derivative of Γk ,

Γ
(2)
k (x, y)= δ2Γk

δϕ(x)δϕ(y)
. (12.22)

We conclude that the expression between the curly brackets in (12.21) is the inverse
of the connected two-point function Gk . In operator notation this identity reads

G
(2)
k = 1

Γ
(2)
k +Rk

. (12.23)
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Inserting this result into (12.20) provides us with the flow equation for the scale-
dependent effective action [4]

∂kΓk[ϕ] = 1

2
tr

(
∂kRk

Γ
(2)
k [ϕ] +Rk

)
. (12.24)

The closed Wetterich equation (12.24) is a non-linear functional integro-differential
equation which contains the full propagator. It is the starting point for many appli-
cations in various branches of theoretical physics.

In passing we note that the intermediate result (12.19) is just the Polchinski equa-
tion for the scale-dependent Schwinger functional,

∂kWk =−1

2
tr
(
∂kRkG

(2)
k

)− 1

2

(
G
(1)
k , ∂kRkG

(1)
k

)
. (12.25)

On the right hand side the scale-dependent connected one- and two-point functions
appear. These are just the first and second functional derivatives of Wk[j ] with re-
spect to its argument.

Both the Polchinski equation (12.25) and Wetterich equation (12.24) are exact
functional renormalization group equations. They are related by a (modified) Leg-
endre transformation and as such they are equivalent. The Polchinski equation has
a more simple structure since the Schwinger functional and its derivatives appear at
most quadratically in this equation. This is not the case for the Wetterich equation
in which the second functional derivative of the effective action occurs in the de-
nominator. But it is exactly this property which stabilizes the flow when one tries to
actually solve the flow equation in some approximation. This explains why Polchin-
ski’s equation is favored in structural investigations whereas Wetterich’s equation is
mainly used in explicit calculations.

In applications the flow equation must be truncated which means that it is pro-
jected onto some finite-dimensional sub-space. Unfortunately it is a highly nontriv-
ial task to find some controlled error estimate for the flow. Typically one improves
the truncation in successive steps by including more and more running couplings to
see how quickly the flow stabilizes. This gives a first impression about the stability
and quality of the flow. In addition one may compare the flows for different regu-
lator functions in a given truncation scheme. For a ‘good truncation’ the resulting
couplings in the infrared should vary little with the regulator function. The most
difficult part in any truncation is to include all relevant degrees of freedom in the
infrared. If the effective action at the cutoff is quadratic,

ΓΛ[ϕ] = 1

2

∫
ddx ϕ

(−Δ+m2
Λ

)
ϕ,

then the unique solution of the FRG-equation reads

Γk[ϕ] = ΓΛ[ϕ] + 1

2
log det

(−Δ+m2
Λ +Rk

−Δ+m2
Λ +RΛ

)
. (12.26)

For the optimized cutoff in (12.10) the last term is
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in two dimensions:
1

8π

(
m2
Λ log

m2
Λ +Λ2

m2
Λ + k2

+ k2 −Λ2
)
,

in three dimensions:
1

6π2

(
m3
Λ arctan

mΛ(k −Λ)

m2
Λ + kΛ

+m2
Λ(Λ− k)+ k3

3
− Λ3

3

)
,

in four dimensions:
1

64π2

(
m4
Λ log

m2
Λ + k2

m2
Λ +Λ2

+m2
Λ

(
Λ2 − k2)+ k4

2
− Λ4

2

)
.

12.3 Functional Renormalization Applied to Quantum
Mechanics

Before applying the flow equation to quantum field theory we study approximate
solutions for the ubiquitous anharmonic oscillator with classical Euclidean action

S[ω] =
∫

dτ

(
1

2
q̇2 + V (q)

)
, (12.27)

depending on a classical potential V . Many techniques and approximations used in
field theories can nicely be illustrated and checked against semi-analytic results for
this simple quantum-mechanical model. Here we are mainly interested in the effec-
tive potential and consider the following low energy approximation to the effective
average action

Γk[ω] =
∫

dτ

(
1

2
q̇2 + uk(q)

)
(12.28)

with scale-dependent effective potential uk . We have neglected higher derivative
terms or mixed terms of the form qnq̇m. The truncation (12.28) is the local potential
approximation (LPA). It is the leading order in a systematic gradient expansion of
the effective action.

On the right hand side of the flow equation the second functional derivative of
Γk enters, which in the LPA has the simple form Γ

(2)
k =−∂2

τ + u′′k(q). In order to
find the flow projected onto the effective potential it suffices to consider a constant
q , for which

∫
dτ ∂kuk(q)= 1

2

∫
dτ dτ ′ ∂kRk

(
τ − τ ′

)(−∂2
τ + u′′k(q)+Rk

)−1(
τ ′ − τ

)

= 1

2

∫
dτ

∫ ∞

−∞
dp

2π

∂kRk(p)

p2 + u′′k(q)+Rk(p)
. (12.29)

To proceed we must choose a regulator function which conforms to the above men-
tioned conditions. It has been argued in [12, 13] that the regulator function in (12.10)
is optimal since it improves the stability properties of the flow equation. Its deriva-
tive is ∂kRk(p)= 2kθ(k2 − p2) such that for a constant q we obtain the following
non-linear partial differential equation for the effective potential,

∂kuk(q)= 1

π

k2

k2 + u′′k(q)
. (12.30)
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Note that the minimum of uk(q) cannot be the ground state energy but differs by a
q-independent contribution. This already becomes clear by studying the free particle
case for which uΛ = 0 and (12.30) yields uk = (k −Λ)/π . In order to extract the
true ground state energy from uk we perform a subtraction to avoid the build up
of unphysical zero-point energy contributions [10]. The free particle limit fixes this
subtraction in the flow equation and we end up with

∂kuk = 1

π

(
k2

k2 + u′′k(q)
− 1

)
=− 1

π

u′′k(q)
k2 + u′′k(q)

. (12.31)

Let us consider an even potential at the cutoff scale. Then the right hand side of
(12.31) is an even function at the cutoff and the solution of the flow equation will be
even at all scales. To proceed we make a polynomial ansatz for the even potential,

uk(q)=
∑

n=0,1,2,...

1

(2n)!a2n(k)q
2n, (12.32)

where the effects of the fluctuation with short wavelengths are encoded in scale-
dependent couplings a2n. Inserting the second derivative of uk with respect to q

into (12.31) and comparing coefficients in a series expansion in powers of q2 yields
an infinite set of coupled ordinary differential equations,

da0

dk
=− 1

π
a2Δ0, Δ0 = 1

k2 + a2
,

da2

dk
=−k2

π
a4Δ

2
0,

da4

dk
=−k2Δ2

0

π

(
a6 − 6a2

4Δ0
)
, (12.33)

da6

dk
=−k2Δ2

0

π

(
a8 − 30a4a6Δ0 + 90a3

4Δ
2
0

)
,

...
...

where the dots indicate the equations for the higher coefficients. As initial conditions
we use the parameters a2n at the cutoff—the parameters in the classical potential.

We first project the flow onto the space of fourth-order polynomials and hence
impose a6 = 0 in Eqs. (12.33). Using the standard notation

a0 =E, a2 = ω2 and a4 = λ, (12.34)

we find the following truncated system of flow equations

dEk

dk
=−ω2

k

π
Δ0,

dω2
k

dk
=−k2λk

π
Δ2

0,
dλk
dk

= 6k2λ2
k

π
Δ3

0. (12.35)

With the octave-program on p. 286 we solved these differential equations subject
to the initial conditions EΛ = 0,ωΛ = 1 and a varying quartic coupling λ at the
cutoff scale. The scale-dependent couplings Ek and ω2

k are depicted in Fig. 12.3.
They hardly change for k � ω and only when the scale parameter is comparable
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Fig. 12.3 The flow of the couplings Ek and ω2
k of the anharmonic oscillator for the cutoff values

EΛ = 0 and ω2
Λ = 1. The values at k = 0 contain quantum corrections from all length scales

to the characteristic scale ω of the oscillator do the couplings begin to flow. For
a positive ω = ωk=0 the effective potential is minimal at the origin such that the
ground state energy is just E0 = min(uk=0). The energy of the first excited state is
given by the curvature of the effective potential at its minimum,

E1 =E0 +
√
u′′k=0(0)=E0 +ωk=0. (12.36)

The second and sixth columns in Table 12.1 contain the energies of the ground
state and first excited state for varying values of the quartic coupling λ of the anhar-
monic oscillator. The fifth and last columns contain the ‘exact values’ for E0 and E1

obtained by a numerical diagonalization of the matrix-Schrödinger operator of the
anharmonic oscillator with SLAC lattice derivative [14, 15]. A comparison reveals
that the simple projection of the LPA-flow onto polynomials of order four already
leads to rather accurate values for the energies.

12.3.1 Projection onto Polynomials of Order 12

To judge the quality of the polynomial truncation we also calculated the flow pro-
jected onto even polynomials of order 12 with the octave-program on p. 286. The
corresponding energies are listed in the columns 3 and 7 in Table 12.1 and they are
almost identical to the values obtained for the projection onto fourth-order polyno-
mials. For positive ω2 we do not gain much by including higher-order terms in the
polynomial truncation.
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Table 12.1 Energies of the ground state and first excited state of the anharmonic oscillator with
varying λ extracted from the flow in the LPA projected onto polynomials of order 4 and order 12.
We used the optimized regulator and the Callan–Symanzik regulator Rk(p)= k2. The fifth and last
column contain the ‘exact values’. The energies and couplings are given in units of �ω

Cutoff Ground state energy Energy of first excited state

optimal
order 4

optimal
order 12

Callan
order 4

exact
result

optimal
order 4

optimal
order 12

Callan
order 4

exact
result

λ= 0 0.5000 0.5000 0.5000 0.5000 1.5000 1.5000 1.5000 1.5000

λ= 1 0.5277 0.5277 0.5276 0.5277 1.6311 1.6315 1.6307 1.6313

λ= 2 0.5506 0.5507 0.5504 0.5508 1.7324 1.7341 1.7314 1.7335

λ= 3 0.5706 0.5708 0.5703 0.5710 1.8177 1.8207 1.8159 1.8197

λ= 4 0.5885 0.5889 0.5882 0.5891 1.8923 1.8968 1.8898 1.8955

λ= 5 0.6049 0.6054 0.6045 0.6056 1.9593 1.9652 1.9562 1.9637

λ= 6 0.6201 0.6207 0.6196 0.6209 2.0205 2.0278 2.0168 2.0260

λ= 7 0.6343 0.6350 0.6336 0.6352 2.0771 2.0857 2.0728 2.0836

λ= 8 0.6476 0.6484 0.6469 0.6487 2.1299 2.1397 2.1250 2.1374

λ= 9 0.6602 0.6611 0.6594 0.6614 2.1794 2.1905 2.1741 2.1879

λ= 10 0.6721 0.6732 0.6713 0.6735 2.2263 2.2385 2.2205 2.2357

λ= 20 0.7694 0.7714 0.7679 0.7719 2.5994 2.6209 2.5898 2.6166

12.3.2 Changing the Regulator Function

In order to study the dependence of the flow on the regulator function we now use the
momentum-independent Callan–Symanzik regulator Rk(p)= k2. After subtracting
the unphysical zero-point energy contributions the flow equation for the effective
potential (12.29) takes the form

∂kuk = 1

2

(
k2

k2 + u′′k(q)

)1/2

− 1

2
. (12.37)

As before we choose an even potential at the cutoff such that uk stays even at all
scales. Expanding uk in even powers of q and comparing coefficients we find the
following equations for the flow projected onto fourth-order polynomials,

da0

dk
= 1

2

(
kΔ

1/2
0 − 1

)
,

da2

dk
=−k

4
a4Δ

3/2
0 , (12.38)

da4

dk
= 9k

8
a2

4Δ
5/2
0 .

Similarly as for the optimized regulator we calculated the energies of the ground
state and first excited state with the octave-program on p. 286 and the results are
collected in the 5th and second to last columns in Table 12.1. The values are almost
as accurate as those obtained with the optimized cutoff function.
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12.3.3 Solving the Flow Equation for Non-convex Potentials

The classical potential with negative ω2 shows a local maximum at the origin and
two minima at ±v, where v2 =−6ω2/λ. The flow equation (12.30) reveals that uk
changes most rapidly near positions where its curvature is minimal which happens
at maxima of uk . The denominator k2+u′′k in the equation is positive for large scales
and the structure of the flow equation ensures that it remains positive during the flow.
It follows from the flow equation (12.31) that uk(q) increases with decreasing k if
u′′k(q) is positive and it decreases if u′′k(q) is negative. This implies that a double-well
potential flattens when it flows to the infrared and finally becomes convex for k→ 0.
This is expected on general grounds and has been discussed in the context of the
Wetterich equation in [16]. Figure 12.4 shows the solution of the partial differential
equation (12.31) for a classical double-well potential with couplings ω2 =−1 and
λ = 1. Here we see explicitly how the potential becomes convex at small scales.
The parabolic differential equation (12.31) has been solved numerically with the
octave function flowpde on p. 288. For the numerical treatment we discretized
coordinate space and replaced the continuous position variable q by equidistant
points q1, . . . , qN in a suitable chosen interval [−L,L]. Then the function uk(q) of
the two variables k and q becomes a vector-valued function uk(qi) of the continuous
flow parameter k. At the same time the partial differential equation (12.31) turns into
a system of N ordinary differential equations

∂kuk(qi)=− 1

π

(�uk)(qi)

k2 + (�uk)(qi)
, (12.39)

where � is a discretized second derivative. In the function flowpde we use

(�uk)(qi)= uk(qi+1)+ uk(qi−1)− 2uk(qi)

(�q)2

for which an even classical potential flows into an even effective potential.
The energies of the ground state and first excited state of the anharmonic oscilla-

tors with double-well potential are given in Table 12.2. We see that the projection of
the flow onto fourth-order polynomials yields inaccurate results for weak couplings.
The reason is that for small λ/ω3 the potential near the minimum of the classical po-
tential changes rapidly and this happens away from the origin where the polynomial
approximation applies. The numerical solution of the flow equation (12.31) does
better. But for decreasing λ or equivalently increasing barrier of the classical po-
tential it becomes more and more difficult to extract reliable results from the LPA.
For large barriers the low-lying energies come in almost degenerate pairs and the
splitting of the doublet is induced by instanton effects. To detect these exponentially
suppressed non-perturbative effects one needs to go beyond the leading order LPA
[17].
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Fig. 12.4 Flow of the
scale-dependent effective
potential in the local potential
approximation. At the cutoff
the flow begins with a
non-convex double-well
potential and for small scales
ends up with a convex
potential uk=0. Depicted is
the solution of (12.31) with
initial couplings ω2 =−1 and
λ= 1

Table 12.2 Energies of the ground state and first excited state for the anharmonic oscillator with
ω2 = −1 and varying λ. All energies are calculated with the optimized regulator. For small λ
the polynomial approximation of order 4 fails. Also shown are the energies calculated from the
numerical solution of the partial differential equation (12.31). In the fifth and last column we listed
the ‘exact values’. Energies and couplings are given in units of �ω

Ground state energy Energy of first excited state

optimal
order 4

optimal
order 12

pde exact optimal
order 4

optimal
order 12

pde exact

λ= 1 −0.8732 −0.8556 −0.7887 −0.8299

λ= 2 −0.2474 −0.2479 −0.2422 0.0049 0.0063 −0.0216

λ= 3 0.2473 −0.0681 −0.0679 −0.0652 −0.2241 0.3514 0.3500 0.3307

λ= 4 −0.0186 0.0286 0.0290 0.0308 0.3511 0.5753 0.5755 0.5598

λ= 5 0.0654 0.0949 0.0953 0.0967 0.5835 0.7455 0.7462 0.7324

λ= 6 0.1234 0.1457 0.1461 0.1472 0.7509 0.8842 0.8851 0.8723

λ= 7 0.1688 0.1871 0.1876 0.1885 0.8851 1.0021 1.0030 0.9909

λ= 8 0.2063 0.2223 0.2228 0.2236 0.9987 1.1052 1.1061 1.0944

λ= 9 0.2671 0.2530 0.2535 0.2543 1.1863 1.1972 1.1981 1.1866

λ= 10 0.2386 0.2803 0.2808 0.2816 1.0978 1.2805 1.2814 1.2701

λ= 20 0.4536 0.4632 0.4639 0.4643 1.7866 1.8638 1.8648 1.8538

Comparison with Weak-Coupling Perturbation Expansion

From ordinary weak-coupling stationary perturbation theory for the anharmonic os-
cillator one obtains a series expansion for the ground state energy in powers of λ/ω3.
The leading terms are [18]

E0 = ω

2
+ 3ω

4
ε− 21ω

8
ε2 + · · · , ε = λ

24ω3
. (12.40)
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We wish to extract a similar weak-coupling expansion from the truncated flow equa-
tions (12.35). For the harmonic oscillator with a vanishing λ the coupling ωk is scale
independent and λk = 0 for all k. This points to the following series expansion for
the (dimensionless) scale-dependent couplings in powers of the dimensionless small
parameter ε) 1,

Ek/ω= α0 + α1ε+ α2ε
2 + · · · ,

ω2
k/ω

2 = 1+ β1ε+ β2ε
2 + · · · , (12.41)

λk/24ω3 = ε+ γ2ε
2 + · · · .

Inserting these expansions into the truncated flow equations (12.35) and compar-
ing coefficients of ε0, ε1 and ε2 leads to simple flow equations for the coefficient
functions α0, α1, α2, β1, β2 and γ2. For large scales the coefficients must vanish and
this initial condition determines the solution. Details of the calculation are found in
problem 12.1.

It is easier to find an explicit solution of these equations if we first neglect the
running of the anharmonic coupling and set λk = λ or equivalently γ2 = 0. For this
crude truncation the coefficient functions α0, α1 are given in (12.114) and α2 in
(12.115). The ground state energy is obtained if we set x = k/ω= 0 in these results,
such that

E0 = ω

2
+ 3ω

4
ε− 21ω

8
κε2 + · · · , κ = 8π2 + 29

14π2
= 0.7813. (12.42)

Already from our crude approximation we have obtained the correct coefficient
3/4 for the first-order contribution. The coefficient of the second-order contribution
is off by the factor κ ≈ 0.78. Even for a running λk we can integrate the differential
equations for the coefficients analytically. The small-x expansions of the coefficients
are given in (12.114) in the Appendix and lead to

E0 = ω

2
+ 3ω

4
ε− 21ω

8
κ ′ε2 + · · · , κ ′ = 10π2 − 29

7π2
= 1.0088. (12.43)

We see that the simple local potential approximation projected onto polynomials of
degree four reproduces the second-order coefficient in the weak-coupling expansion
very well. It exceeds the correct value by less than 1 %.

12.4 Scalar Field Theory

A quantum-mechanical system can be interpreted as one-dimensional field theory,
and this explains why the previous methods and results are easily extended to field
theories—at least to field theories without local symmetries. In this section we study
the flow equation for a scalar field theory in d dimensions with Euclidean action

L = 1

2
(∂μφ)

2 + V (φ). (12.44)
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First we consider the local potential approximation of the effective average action

Γk[ϕ] =
∫

ddx

(
1

2
(∂μϕ)

2 + uk(ϕ)

)
. (12.45)

Its second functional derivative Γ (2)
k =−Δ+ u′′k(ϕ) enters the flow equation. Pro-

jecting the flow onto constant average fields we arrive at the following flow equation
for the scale-dependent effective potential,

∂kuk(q)= 1

2

∫
ddp

(2π)d
∂kRk(p)

p2 + u′′k(q)+Rk(p)
. (12.46)

For the optimized regulator the integral can be calculated in closed form and the
result contains the volume of the d-dimensional ball divided by (2π)d ,

μd = πd/2

(2π)dΓ (d/2+ 1)
= 1

(4π)d/2Γ (d/2+ 1)
. (12.47)

The flow equation has the simple form

∂kuk(ϕ)= μd

kd+1

k2 + u′′k(ϕ)
, (12.48)

where prime denotes the derivative with respect to the field. For d = 1 we recover the
flow equation for the anharmonic oscillator (12.30). Inserting the polynomial ansatz
(12.32) for an even potential into the flow equation and comparing coefficients we
end up with similar flow equations as in quantum mechanics,

da0

dk
= −μdk

d+2Δ0, Δ0 = 1

k2 + a2
,

da2

dk
= −μdk

d+2Δ2
0a4,

da4

dk
= −μdk

d+2Δ2
0

(
a6 − 6a2

4Δ0
)
,

da6

dk
= −μdk

d+2Δ2
0

(
a8 − 30a4a6Δ0 + 90a3

4Δ
2
0

)
,

...
...

(12.49)

where the geometric factor μd was introduced earlier in (12.47).

12.4.1 Fixed Points

To localize the fixed points of RG flow in the local potential approximation we
introduce the dimensionless field and potential

ϕ = k(d−2)/2√μdχ and uk(ϕ)= kdμdvk(χ) (12.50)
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and rewrite the flow equation for uk(ϕ) in terms of these rescaled quantities,

k∂kvk + dvk − d − 2

2
χv′k =

1

1+ v′′k
, (12.51)

where a prime is now the derivative with respect to the dimensionless field χ . At
a fixed point of the flow the first term on the left hand side vanishes, such that a
fixed-point potential v∗ satisfies the following second-order differential equation:

dv∗ − d − 2

2
χv′∗ =

1

1+ v′′∗
. (12.52)

In any dimension this equation has the constant solution dv∗ = 1 corresponding to
a trivial Gaussian fixed point. Does it also possess other regular solutions corre-
sponding to non-Gaussian fixed points? The answer to this question depends on the
dimension d of spacetime.

For an even classical potential vk is even as well and we can set

vk(χ)=wk(ρ), with ρ = χ2

2
. (12.53)

The flow equation for wk(ρ) takes the form

k∂kwk(ρ)+ dwk(ρ)− (d − 2)ρw′
k(ρ)=

1

1+w′
k(ρ)+ 2ρw′′

k (ρ)
, (12.54)

where the prime denotes the derivative with respect to ρ. Note that in two dimen-
sions a classical scalar field is dimensionless such that the last term on the left hand
side of the associated fixed-point equation

dw∗(ρ)− (d − 2)ρw′∗(ρ)=
1

1+w′∗(ρ)+ 2ρw′′∗(ρ)
(12.55)

is absent. This property is the main reason why two-dimensional scalar field theories
admit infinitely many fixed-point solutions [19]. Actually the same happens for two-
dimensional Yukawa theories with scalars and fermions in interaction [20].

In a polynomial truncation to order m we expand the dimensionless potential in
powers of ρ,

w(m) =
m∑

n=0

cnρ
n. (12.56)

The corresponding flow equations for the couplings cn read

k∂kc0 = −dc0 +Δ0, Δ0 = (1+ c1)
−1,

k∂kc1 = −2c1 − 6c2Δ
2
0,

k∂kc2 = (d − 4)c2 − 15c3Δ
2
0 + 36c2

2Δ
3
0,

k∂kc3 = (2d − 6)c3 − 28c4Δ
2
0 + 180c2c3Δ

3
0 − 216c3

2Δ
4
0,

k∂kc4 = (3d − 8)c4 − 45c5Δ
2
0 +

(
336c2c4 + 225c2

3

)
Δ3

0

− 1620c2
2c3Δ

4
0 + 1296c4

2Δ
5
0.

...
...

(12.57)
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Scalar Fields in Three Dimensions

Many three-dimensional field theories admit non-trivial fixed points and the scalar
theory is no exception. As we cannot solve the fixed-point equation (12.55) exactly,
we have to find ways to get at least approximate solutions. We use the polynomial
truncation which leads to (12.57) with vanishing left hand sides. Thus we find m

algebraic equations for the m+ 1 fixed-point couplings,

0 = f0
(
c∗0, c∗1

)= f1
(
c∗1, c∗2

)= · · · = fm−1
(
c∗1, . . . , c∗m

)
.

The functions are just the right hand sides of the system of equations (12.57) for
d = 3. They are polynomials in c∗0, c∗2, . . . , c∗m and Δ0 = 1/(1 + c∗1). Since the
slope at the origin c∗1 is the only non-polynomial variable we solve the system for
c∗0, c∗2, c∗3, . . . , c∗m in terms of c∗1 . Algebraic computer programs1 find the solution for
polynomials of order 42. In the intermediate manipulation it is useful to introduce
c∗1 − 1 as new variable. The explicit expressions for the lowest couplings read

c∗0 =
1

3

1

1+ c∗1
,

c∗2 = −c∗1(1+ c∗1)2

3
,

c∗3 =
c∗1(1+ c∗1)3(1+ 13c∗1)

45
,

c∗4 = −c∗2
1 (1+ c∗1)4(1+ 7c∗1)

21
,

...
...

c∗m = c∗2
1

(
1+ c∗1

)m
Pm−3

(
c∗1

)
,

(12.58)

where Pk is a polynomial of order k. We recover the trivial solution

c∗0 =
1

3
, 0 = c∗2 = c∗3 = c∗4 = · · · (12.59)

corresponding to the Gaussian fixed point w′∗ = 1. To find an approximate non-
trivial fixed-point solution we truncate the tower of algebraic equations and set
c∗m = 0 which leads to Pm−3(c

∗
1) = 0. Generically, the polynomials Pk has sev-

eral real roots and we must pick a particular one. We choose roots c∗1 such that for
large m they converge to a fixed value. For this choice of slopes at the origin the
approximating polynomials converge to a power series with maximal radius of con-
vergence. For example, for polynomials of order 20 and 42 we find the two roots
c∗1 =−.186066 and c∗1 − .186041 in agreement with [21]. Inserting the solution for
m= 20 and for m= 42 into (12.58) yields the coefficients of the polynomials given
in Table 12.3.

In Fig. 12.5 we plotted the polynomials of order 10,20,30 and 40 which approx-
imate the fixed-point solution in the local potential approximation. The potentials
are compared with the numerical solution of the fixed-point equation.

1The calculation in this section were performed with REDUCE 3.8.
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Table 12.3 With n! multiplied coefficients c∗n of two polynomial approximations to the fixed-point
solution. The lowest coefficients do not change much when one increases the polynomial degree
from m= 20 to m= 42

c∗0 c∗1 c∗2 c∗3 c∗4 c∗5 c∗6

m= 20 0.409534 −0.186066 0.082178 0.018981 0.005253 0.001104 −0.000255

m= 42 0.409533 −0.186064 0.082177 0.018980 0.005252 0.001104 −0.000256

c∗7 c∗8 c∗9 c∗10 c∗11 c∗12 c∗13

m= 20 −0.000526 −0.000263 0.000237 0.000632 0.000438 −0.000779 −0.002583

m= 42 −0.000526 −0.000263 0.000236 0.000629 0.000431 −0.000799 −0.002643

c∗14 c∗15 c∗16 c∗17 c∗18 c∗19 c∗20

m= 20 −0.002029 0.007305 0.028778 0.034696 −0.077525 −0.381385 0.000000

m= 42 −0.002216 0.006677 0.026544 0.026320 −0.110498 −0.517445 −0.587152

Fig. 12.5 Fixed-point
solution w∗ of a scalar field
theory with even potentials in
three dimensions. Depicted
are the numerical solution to
the differential equation
(12.60) and results of
polynomial approximations
with polynomials of degree
10,20,30 and 40

Numerical Solution

When we try to solve the fixed-point equation by numerical means we generically
run into a singularity at a finite value of ρ. At the singular point the potential and its
derivative are both finite but its higher derivatives are divergent. A solution of the
fixed-point equation

w′′∗ =
1

2ρ

1

dw∗ − (d − 2)ρw′∗
− 1+w′∗

2ρ
, (d = 3), (12.60)

may become singular when the denominator 3w∗(ρ)−ρw′∗(ρ) vanishes. Regularity
at the origin demands that the ‘initial values’ w∗(0),w′∗(0) are related as

w′∗(0)= c∗ and w∗(0)= 1

3

1

1+ c∗
. (12.61)
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This is just the first relation in (12.58). From the polynomial truncation we al-
ready know that the slope at the origin is w′∗(0) ≈ −0.18606. We applied the
shooting method with a seventh-order Runge–Kutta integrator and determined the
slope for which the numerical solution is regular for ρ ≤ 120. The resulting slope
w′∗(0)≈−0.186064249376 is almost identical with the slope −0.186064279993 of
the approximating polynomial of degree 42.

12.4.2 Critical Exponents

Let us study the solution to the flow equation in the vicinity of a prescribed fixed-
point solution w∗. Thus we write wk = w∗ + δk and linearize the flow equation
(12.54) in the small perturbation δk . Using the fixed-point equation of w∗ we end
up with the following linear differential equation for the small fluctuation δk :

k∂kδk =−dδk + (d − 2)ρδ′k −
(
dw∗ − (d − 2)ρw′∗

)2(
δ′k + 2ρδ′′k

)
. (12.62)

To make progress we insert the polynomial approximation for the fixed-point solu-
tion and make a polynomial ansatz for the perturbation,

δk(ρ)=
m−1∑

n=0

dnρ
n, ρ = χ2

2
. (12.63)

The resulting linear system for the coefficients dm has the form

k∂k

⎛

⎜⎜⎜
⎝

d0
d1
...

dm−1

⎞

⎟⎟⎟
⎠
=M

(
c∗0

)

⎛

⎜⎜⎜
⎝

d0
d1
...

dm−1

⎞

⎟⎟⎟
⎠

(12.64)

and the critical exponents are identified with the eigenvalues of the m-dimensional
matrix M . With an algebraic computer program we calculated the eigenvalues for
polynomial truncations up to order 46. The results are listed in Table 12.4. The Z2-
symmetric model has two negative exponents ω0 =−3 and ω1 =−1/ν. The former
corresponds to the trivial scaling of the ground state energy and is unrelated to the
critical behavior. The remaining exponents ω2,ω3, . . . are all positive. We see that
the smallest exponents extracted from the polynomial truncations converge with
increasing m and can be extrapolated to m =∞. The LPA-prediction obtained in
this way ν = 0.649562 should be compared with the accurate prediction ν = 0.630
of the high-temperature expansion, see Table 9.9. To obtain more accurate results
one needs to go beyond the local potential approximation.

12.5 Linear O(N) Models

The previous results are readily extended to the linear O(N) models in d dimen-
sions. So let us assume that the scalar field φ has N real components and that the
interaction term in the Lagrangian density

L = 1

2
(∂μφ)

2 + V (φ), (12.65)
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Table 12.4 The five smallest non-trivial eigenvalues of the stability matrix corresponding to the
Wilson–Fisher fixed point. The exponents are calculated for different polynomial truncations up to
degree m= 46 of the LPA. The eigenvalue ω0 =−3 of the scaling operator 1 is not listed

m ν =−1/ω1 ω2 ω3 ω4 ω5

10 0.648617 0.658053 2.985880 7.502130 17.913494

14 0.649655 0.652391 3.232549 5.733445 9.324858

18 0.649572 0.656475 3.186784 5.853987 9.141093

22 0.649554 0.655804 3.170538 5.977066 8.522811

26 0.649564 0.655629 3.182910 5.897290 8.844632

30 0.649562 0.655791 3.180847 5.903039 8.907607

34 0.649561 0.655749 3.178636 5.922910 8.702583

38 0.649562 0.655731 3.180577 5.908885 8.814225

42 0.649562 0.655755 3.180216 5.909910 8.847386

46 0.649562 0.655746 3.179541 5.915754 8.738608

is O(N) invariant. This means that the potential depends only on the modulus of
φ ∈R

N . In the fixed-point analysis we use the dimensionless field χ and the dimen-
sionless potential νk in (12.50). For the O(N) models it is convenient to introduce
the invariant composite field

ρ = 1

2

N∑

i=1

χ2
i , (12.66)

since the invariant scaling potential is a function of ρ only, νk(χ) = wk(ρ). For
several components the flow equation (12.51) generalizes to

∂kνk(χ)= dνk − d − 2

2
χν′k = tr

(
1

1+ ∂i∂j vk(χ)

)
. (12.67)

For νk = wk(ρ) the matrix in the denominator becomes ∂i∂j νk = δijw
′
k + χiχjw

′′
k

and has just two eigenvalues: the single eigenvalue w′
k + 2ρw′′

k and the highly de-
generate eigenvalue w′

k . Hence for multi component fields with O(N) invariant in-
teraction the flow equation (12.51) translates into

k∂kwk + dwk − (d − 2)ρw′
k =

N − 1

1+w′
k

+ 1

1+w′
k + 2ρw′′

k

, (12.68)

where a prime denotes the derivative with respect to the invariant field ρ. The first
term on the right hand side is easily recognized as the contribution of the N − 1
Goldstone modes. The last term is related to the massive radial mode. For large N
the Goldstone modes give the main contribution to the flow equation.

To study the critical behavior we linearize the flow equation about a fixed-point
solution w∗ and hence set wk =w∗ + δk . The fluctuation δk obeys the linear differ-
ential equation

k∂kδk =−dδk + (d − 2)ρδ′k −
(N − 1)δ′k
(1+w′∗)2

− δ′k + 2ρδ′′k
(1+w′∗ + 2ρw′′∗)2

. (12.69)
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Table 12.5 The slope of the fixed-point solution at the origin and the three smallest non-trivial
eigenvalues of the stability matrix corresponding to the Wilson–Fisher fixed point of the O(N)

models. The eigenvalue ω0 =−3 of the scaling operator 1 is not listed. The numbers are calculated
with a polynomial truncation of degree 40

N 1 2 3 100 1000

−w′∗(0) 0.186064 0.230186 0.263517 0.384172 0.387935

ν =−1/ω1 0.64956 0.70821 0.76113 0.99187 0.99923

ω2 0.6556 0.6713 0.6990 0.97218 0.99844

ω3 3.1798 3.0710 3.0039 2.98292 2.99554

Now we proceed exactly in the same way as for the one-component model without
Goldstone modes considered in the previous section. The fixed-point solution and
the critical exponents in the polynomial truncation are computed with an algebraic
computer program. We used polynomials of degree 40 to determine the eigenvalues
of the stability matrix listed in Table 12.5. For a given N we must find polynomial
approximations which for small values of ρ converge to a fixed-point solution. For
this purpose one picks that root of the polynomial Pm−3(c

∗
1) for which the roots

converge with increasing degree of the polynomials. This amounts to a fine tuning
of the slope at the origin. The correct slopes are calculated beforehand and are used
in the algebraic computer program.

Actually we can do better and extend the polynomial truncation to much higher
order. For example, for the Z2-model we obtain the value ν = 0.649561776 from
a truncation to polynomials of degree m = 60. With the help of a conformal map-
ping one can further extend the polynomial truncation to order 75 which yields the
more accurate value2 ν = 0.649561773880 . . . . Plots of the scaling potentials w∗ of
various O(N) models and more critical exponents are found in [21].

Looking at the exponents in the table one may conjecture that for large N the
critical exponents converge to ω∞

n = 2n − 3. Since it was shown in [22] that the
LPA is exact in the large N limit for the effective potential we expect that the ω∞

n

are the exact critical exponents in this limit. In the following section we shall see
that this indeed the case. Actually the exponents ωn converge to their limiting values
ω∞
n as

ωn = ω∞
n + δn

N
+ · · · . (12.70)

Linear fits in the small parameter 1/N to the slope as well as the critical exponent ν
for N = 100,500 and 1000, as depicted in Fig. 12.6, yield the asymptotic formulas

w′∗(0)≈−0.3881+ 0.4096/N, ν ≈ 0.9998− 0.9616/N. (12.71)

The number−0.3881 is close to that of the largeN expansion, which is−0.3883 . . . .
Our prediction for ν is also close to the exact result ν ≈ 1 − 1.081/N derived in

2Private communication by Daniel Litim.
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Fig. 12.6 The slope w′∗(0) and the critical exponent ν for large values of N . Fitting the data points
for N ≥ 100 with a linear function in 1/N yields (12.71). The interpolating linear functions are
plotted in the figure

Table 12.6 Critical exponents from the derivative expansion (de) [25], the BMW approximation
[26] and lattice simulation combined with the high-temperature expansion [27–29], see Table 9.12

N 1 2 3 4 10 100

νde 0.631 0.666 0.704 0.739 0.881 0.990

νbmw 0.632 0.674 0.715 0.754 0.889 0.990

νmc,hte 0.630 0.672 0.711 0.749 0.867

ωbmw 0.78 0.75 0.73 0.72 0.80 1.00

ωmc 0.832 0.785 0.773 0.765

[23]. Notice that the subleading terms are very small for the N used in the fit. To
make further progress one must go beyond the LPA. In a next step in the deriva-
tive expansion one would include a momentum- and field-dependent wave function
renormalization and terms containing derivatives of the fields. Also, to determine
critical exponents like the anomalous dimension one should allow for a momen-
tum dependence of the correlation functions. An approximation which keeps the
momentum dependence in the two-point function has been proposed in [24]. This
approximation was used to obtain better values for critical exponents of the O(N)

models. Table 12.6 contains the results obtained with such approximations. They
are compared with the exponents extracted from simulations and high-temperature
expansions. Including the momentum dependence has become more important over
the last years. This leads to a higher numerical effort and the recently published nu-
merical toolbox FlowPy [30] can be used to find solutions of a broad class of partial
differential equations that are encountered in next to leading-order approximations.

12.5.1 Large N Limit

For a large number of field components N we only keep the terms of order N on the
right hand side of the flow equation (12.68). In the resulting differential equation

k∂kwk = (d − 2)ρw′
k − dwk + N

1+w′
k

(12.72)
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the contribution of the radial mode is missing. Thus in the large-N limit only the
fluctuating Goldstone modes are responsible for a non-trivial flow to the infrared. To
obtain a differential equation which is linear in the first derivatives and hence can be
solved with the methods of characteristics, we differentiate (12.72) with respect to
the field ρ. Introducing the dimensionless scale parameter t = log(k/Λ) we obtain
the flow equation for w′(t, ρ)=w′

k(ρ):

∂tw
′ = (d − 2)ρw′′ − 2w′ − N

(1+w′)2
w′′. (12.73)

Before we present and discuss the analytical solutions of this differential equation
we study the fixed-point solutions and calculate the critical exponents.

Fixed-Point Analysis

It is not difficult to solve the ordinary differential equation for a fixed-point solu-
tion w′∗(ρ). The general solution depends on a free parameter c and reads

1√±w′
ρ

N
=H±

(
w′∗

)+ c, ±w′∗ ≥ 0, (12.74)

where we introduced the functions

H+
(
w′)= 1√

w′
3w′ + 2

2w′ + 2
+ 3

2
arctan

(√
w′), (12.75)

H−
(
w′)= 1√−w′

3w′ + 2

2w′ + 2
− 3

2
arctanh

(√−w′). (12.76)

Setting ρ = 0 in (12.74) yields the slope at the origin, w′∗(0)=−0.3883467189 . . . ,
and this result can be compared with the values in Table 12.5. All solutions vanish
at ρ0 =N . An expansion around this node reveals that only the solution with c= 0
is analytic. For the non-analytic solutions w′∗ vanishes at ρ0. Solutions with positive
c are globally defined and solutions with negative c are multi-valued. We plotted
solutions for different values of c as functions of ρ/N in Fig. 12.7. To find all
critical exponents it is more convenient to use the fixed-point equation for w∗ in
place of w′∗,

(d − 2)ρw′∗ − dw∗ + N

(1+w′∗)
= 0. (12.77)

To linearize the flow equation (12.72) near a fixed point we set w ≈ w∗(ρ) +
eωtδ(ρ). The small fluctuations obey the eigenvalue problem

(ω+ d)δ = (d − 2)ρδ′ − N

(1+w′∗)2
δ′. (12.78)

Following [33] we now express the fluctuation in terms of the fixed-point solution.
To that aim we use the ρ-derivative of the fixed-point equation,

(d − 2)ρw′′∗ − 2w′∗ −
N

(1+w′∗)2
w′′∗ (12.79)
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Fig. 12.7 One parametric
family of derived fixed-point
potentials in the large N
limit. Depicted are solutions
with c-values between −1
and 1 and the particular
solution with c=−3π/4
which touches the w′∗ axis.
All solutions have a node at
ρ =N . The solutions with
c �= 0 are non-analytic and
have zero slope w′′∗ at the
node

to simplify the right hand side of (12.78) as follows:

(ω+ d)δ = 2ω′∗
ω′′∗

δ′. (12.80)

This equation is easily solved and leads to

w(t, ρ)≈w∗(ρ)+ const× eωtw′∗(ρ)(ω+d)/2. (12.81)

If the solutions w(t, ρ) and w∗ have Taylor expansions in powers of ρ with a finite
radius of convergence, the result (12.81) implies that the eigenvalues of the stability
matrix must be quantized,

ω ∈ {2n− d | n= 0,1,2, . . .}. (12.82)

In three dimensions there exist two relevant perturbations. The eigenvalue −3 be-
longs to the scaling operator 1 and the eigenvalue −1 yields the critical exponent
ν = 1. Note that already in the polynomial truncation we have anticipated this sim-
ple result for the exponents in the large-N limit.

12.5.2 Exact Solution of the Flow Equation

The most general solution of the first-order evolution equation (12.73) was derived
in [31, 32] with the method of characteristics. It is the solution (12.74) with the
constant c replaced by an arbitrary function of F(e2tw′) and thus has the form

H±
(
w′)− 1√±w′

ρ

N
= F

(
etw′), ±w′ > 0, (12.83)

where the functions H± have been defined in (12.75) and (12.76). To prove that this
is indeed a solution of the flow equation (12.73) one differentiates with respect to
ρ and t , solves the resulting equations for ∂tw′ and w′′ and inserts the solutions
back into the flow equation. The free function F is fixed by initial conditions. Here
it is the requirement that at the cutoff scale Λ the effective potential uk is equal to
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the classical potential V (φ). Recalling the relation between the dimensionful and
dimensionless fields and potentials this means

w′
Λ(ρ)=

1

Λ2
V ′(ρ̃), ρ̃ = 1

2
φ2 = μdΛρ. (12.84)

Now we evaluate equations (12.83) at the cutoff scale where ρ is a known function
of w′

Λ, determined by solving

w′
Λ(ρ)=

1

Λ2
V ′(μ3Λρ), μ3 = 1

6π2
, (12.85)

for ρ in terms of w′
Λ. Collecting our results we end up with the following rather

simple solution of the flow equation,

H±
(
w′)− 1√±w′

ρ

N
=H±

(
e2tw′)− e−t√±w′

ρ(e2tw′)
N

, ±w′ > 0. (12.86)

Note that ρ on the left hand side is an independent parameter whereas the function
ρ(e2tw′) on the right hand side is obtained by inverting (12.85). Also note that the
dependence on the number of fields only enters via ρ/N . Thus we may set N = 1 if
we use ρ/N in place of ρ as field variable.

Let us consider a theory with a quartic classical potential,

V (ρ̃)= λ̃Λ

2
(ρ̃ − κ̃Λ)

2. (12.87)

At the cutoff scale it is defined in the regime with spontaneous symmetry breaking,
with the minimum of the potential at κ̃Λ. The corresponding w′

Λ in (12.84) reads

w′
Λ(ρ)= λΛ(ρ − κΛ) with λΛ = μ3

λ̃Λ

Λ
, κΛ = 1

μ3

κ̃Λ

Λ
. (12.88)

This means that for a quartic potential

ρ
(
e2tw′)= e2tw′

λΛ
+ κΛ, (12.89)

and this result is inserted into the right hand side of (12.86). To actually calculate the
scale-dependent potential we prescribe at every scale the values of w′ and determine
the corresponding values of the composite field ρ from the mappings

ρ

N
= e−t

N

(
e2tw′

λΛ
+ κΛ

)
+√±w′(H±

(
w′)−H±

(
e2tw′)), ±w′ > 0. (12.90)

For small w′ the right hand side converges to (1 − e−t ) such that a node ρ0 of w′
flows according to

ρ0(t)=N + e−t (κΛ − κcrit), κcrit =N. (12.91)

If we tune the cutoff parameter κΛ to κcrit then the node of the dimensionless w′
becomes scale invariant. Any other choice of this parameter leads to an instability
since the ρ0(t)− ρ0(0) grows exponentially fast. For small scales equation (12.91)
reads
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Fig. 12.8 Flow of the
dimensionless effective
potential with cutoff
parameters λΛ = 1 and
κΛ = 1. For this fine tuned
value of κΛ the potential
flows into the regular
fixed-point solution with
c= 0. Shown are potentials
with scale parameter
k/Λ= 1,0.95,0.8 and 0.6.
All dimensionless potentials
have their minimum at
ρ/N = 1

ρ

N
= e−t

(
κΛ

N
− 1

)
+√±w′H±

(
w′), t )−1. (12.92)

As expected, this is only a solution of the fixed-point equation if κΛ = κcrit. For
this fine tuned value the potential flows into the fixed-point solution with c = 0.
Figure 12.8 shows the flow of the dimensionless potential with critical coupling κcrit.

Symmetry Breaking

To study the phases of the O(N) models for large N we return to the dimensionful
effective potential

uk(ρ̃)

Λ3
= μ3e3twk

(
e−t ρ̃
μ3Λ

)
. (12.93)

In the far infrared uk is minimal at

ρ̃0(t)

μ3Λ
= et ρ0(t)→ κΛ − κcrit ≡ δκΛ for t →−∞. (12.94)

Thus for any positive control parameter δκΛ the system flows into the ordered phase
with broken O(N) symmetry. When we lower the scale the minimum moves in-
wards and the normalized field settles at δκΛ. The flow of the potential with cutoff
parameter κΛ/κcrit = 1.5 is depicted in Fig. 12.9. For any negative control parame-
ter δκΛ the minimum of the full effective potential is always at the origin. Even if
the classical potential has a minimum at κΛ < κcrit the system flows into the disor-
dered O(N) symmetric phase and this is shown in Fig. 12.10. In other words if the
symmetry breaking of the classical theory is not strong enough, the quantum fluctu-
ations drive the system into the symmetric phase. No secondary minimum develops,
and hence there is a second-order phase transition at κΛ = κcrit. Clearly there is just
one relevant coupling, namely κΛ. Only the control parameter δκΛ must be tuned
to fix the qualitative behavior of the quantum system in the infrared. Since in the
large-N limit the LPA for the effective potential becomes exact our conclusions will
not be modified if one considers other truncations.
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Fig. 12.9 Flow of the
dimensionful effective
potential for κΛ/κcrit = 1.5
and λΛ = 1. With decreasing
k the minimum moves
inwards until it settles as δκΛ.
For k = 0 the potential is flat
between 0 and δκΛ. Shown
are potentials with k/Λ

values 1,0.95,0.9,0.8,0.6
and 0. Since κΛ > κcrit the
system ends up in the phase
with broken O(N)

Fig. 12.10 Flow of the
dimensionful effective
potential for κΛ/κcrit = 0.5
and λΛ = 1. Due to quantum
fluctuations the minimum of
the classical potential moves
to the origin. From below to
above the scale parameter
k/Λ has the values
1,0.95,0.9,0.8,0.6 and 0.
Since κΛ < κcrit the system
ends up in the symmetric
phase

12.6 Wave Function Renormalization

In a full next-to-leading order approximation in the derivative expansion one would
include a wave function renormalization Zk(p,ϕ) depending on the scale, fields,
and momenta. Typically this leads to non-linear parabolic partial differential RG-
equations which are not always easy to solve. Here we neglect the field and momen-
tum dependence and consider a scale-dependent wave function renormalization Zk

in the effective action

Γk[ϕ] =
∫

ddx

(
1

2
Zk(∂μϕ)

2 + uk(ϕ)

)
. (12.95)

Thereby the scale-dependent constant Zk is the field-dependent wave function
renormalization at zero field, Zk = Zk(φ = 0). The variation of Γk contains the
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derivatives of the couplings in the effective potential as well as the derivative of the
wave function renormalization,

∂kΓk =
∫

ddx

(
1

2
(∂kZk)(∂μϕ)

2 + ∂kuk(ϕ)

)
, (12.96)

and its second functional derivative with respect to the field is

Γ
(2)
k =−ZkΔ+ u′′k(ϕ). (12.97)

The flow equation simplifies if we use ZkRk in place of Rk in the regulator term
�Sk . This is also suggested by preserving the invariance under field rescalings. With
this parametrization the flow equation in the truncation (12.95) reads

∂kΓk = 1

2
tr

(
∂k(ZkRk)

Zk(p2 +Rk)+ u′′k

)
. (12.98)

As earlier on we employ the optimized regulator in (12.10) for which the flow equa-
tion for the effective potential takes the form

∂kuk = Zk

Zkk2 + u′′k
, where Zk = μd

d + 2
∂k
(
kd+2Zk

)
. (12.99)

The geometric constant μd was introduced earlier in (12.47). Without wave func-
tion renormalization the differential equation simplifies to the flow equation (12.48).
Inserting the series expansion

uk(ϕ)= a0 +
∞∑

n=1

an(k)

n! ϕn (12.100)

and comparing coefficients we obtain the flow equations for the couplings an. The
lowest couplings obey

da0

dk
=ZkΔ0, Δ0 = 1

Zkk2 + a2
,

da1

dk
=−ZkΔ

2
0a3,

da2

dk
=−ZkΔ

2
0

(
a4 − 2Δ0a

2
3

)
,

da3

dk
=−ZkΔ

2
0

(
a5 − 6Δ0a3a4 + 6Δ2

0a
3
3

)
,

da4

dk
=−ZkΔ

2
0

(
a6 − 8Δ0a3a5 − 6Δ0a

2
4 + 36Δ2

0a
2
3a4 − 24Δ3

0a
4
3

)
,

da5

dk
=−ZkΔ

2
0

(
a7 − 10Δ0a3a6 − 20Δ0a4a5 + 60Δ2

0a
2
3a5

+ 90Δ2
0a3a

2
4 − 240Δ3

0a
3
3a4 + 120Δ4

0a
5
3

)
,

da6

dk
=−ZkΔ

2
0

(
a8 − 12Δ0a3a7 − 30Δ0a4a6 − 20Δ0a

2
5 + 90Δ2

0a
2
3a6

+ 90G2
2a

3
4 + 360Δ2

0a3a4a5 − 480Δ3
0a

3
3a5 − 1080Δ3

0a
2
3a

2
4

+ 1800Δ4
0a

4
3a4 − 720Δ5

0a
6
3

)
.

(12.101)
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In leading order Zk = 1 and we recover the flow equations without wave function
renormalization in (12.49).

12.6.1 RG Equation for Wave Function Renormalization

To extract the scale dependence of Zk in the flow equation
∫

ddx

(
1

2
(∂kZk)(∂μϕ)

2 + ∂kuk(ϕ)

)
= 1

2
tr

(
∂k(ZkRk)

Zk(p2 +Rk)+ u′′k(ϕ)

)
(12.102)

we project the right hand side onto the operator (∂ϕ)2. Clearly, this is only possible
if we admit an inhomogeneous average field for which p2 and u′′k(ϕ) do not com-
mute. But it is sufficient to expand the full propagator on the right hand side in pow-
ers of the field up to second order. For this expansion we set u′′k(ϕ)= a2+�u′′k +· · ·
and expand in powers of the field-dependent �u′′k ,

1

Zk(p2 +Rk)+ u′′k(ϕ)
=

∞∑

n=0

(−)nG0
(
�u′′k(ϕ)G0

)n
. (12.103)

For the optimized regulator the free propagator

G0 = 1

Zk(p2 +Rk)+ a2
(12.104)

becomes p-independent below the scale k,

G0
(|p|< k

)=Δ0 = 1

Zkk2 + a2
. (12.105)

In order to project the right hand side of (12.102) onto the operator (∂ϕ)2 we only
need to consider terms quadratic in ϕ. With �u′′k = a3ϕ + a4ϕ

2/2+ · · · we obtain
∫

ddx∂kZk(∂μϕ)
2 = tr

{
∂k(ZkRk)

(
a2

3G0ϕG0ϕG0 − a4

2
G0ϕ

2G0

)}

(∂ϕ)2
.

(12.106)

In momentum space the left hand side takes the form

∂kZk

∫

p

ϕ(−p)p2ϕ(p), where
∫

p

≡
∫

ddp

(2π)d
. (12.107)

We distinguish between a function in x space and its Fourier transform in p space
via their arguments. Inserting the Fourier transform of the free propagator

G0(x)=
∫

p

eipxG0(p) (12.108)

and that of the average field into the last term in (12.106) yields

−a4

2
ϕ2(p = 0)

∫

p

∂k
(
ZkRk(p)

)
G2

0(p).

Only the field at zero momentum enters here, and hence no term like the one in
(12.107) is generated. We conclude that for systems with even potentials for a series
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expansion at the origin (12.100) the wave function renormalization Zk does not flow
in the truncation considered here. For more general potentials or expansions of even
potentials around a non-vanishing vacuum expectation value a3 �= 0 and the second
to last term in (12.106) reads in momentum space

a2
3

∫

p

∫

q

∂k
(
ZkRk(q)

)
G2

0(q)ϕ(−p)G0(p+ q)ϕ(p). (12.109)

Its projection onto (∂ϕ)2 is

1

2
a2

3

∫

q

∂k
(
ZkRk(q)

)
G2

0(q)ΔqG0(q)

∫

p

ϕ(−p)p2ϕ(p). (12.110)

Using these results in the projected flow equation (12.106) finally yields

∂kZk = a2
3

2

∫

q

∂k
(
ZkRk(q)

)
G2

0(q)ΔqG0(q). (12.111)

For the optimized regulator the integrand contains products of distributions, and
for this reason we expand the q-integral in (12.109) directly in powers of p. The
detailed calculation can be found in the Appendix to this section. The final answer
is

k∂kZk =−μdk
d+2(Zka3Δ

2
0

)2 with
1

μd

= (4π)d/2Γ

(
d

2
+ 1

)
. (12.112)

The differential equations (12.99) and (12.112) yield the flow of the effective poten-
tial and scale-dependent wave function renormalization in the next to leading-order
approximation. Actually the anomalous dimension

η=−k∂k logZt (12.113)

of the O(N) model vanishes in the large N limit. But there exist perturbatively
non-renormalizable but asymptotically safe field theories with a large anomalous
dimension at the non-Gaussian fixed point. For example, the Gross–Neveu model in
three dimensions is asymptotically safe and has a large anomalous dimension [34].

12.7 Outlook

It has already been stressed that functional renormalization group equations have
been applied to a variety of quantum and statistical systems. In this chapter we
could only give an introduction into this powerful method with applications to sim-
ple quantum-mechanical systems and scalar field theories. For a further reading I
refer to the textbooks and reviews [5–11]. Here it suffices to mention some inter-
esting recent developments. Of course the flow equations can be formulated for
and applied to fermionic systems as well. Thereby one can dynamically bosonize
the emerging four-fermion operators with the Hubbard–Stratonovich trick [34–36].
For gauge theories with local gauge symmetries the background field method has
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Listing 12.1 Flow of couplings in polynomial LPA

1 function x=truncflowanho_lambda)
2 # calculates the flow for even potentials projected onto
3 # quartic polynomials. At the cutoff E=0. The program asks
4 # for lambda at the cutoff in units of omega. The running
5 # of the effective couplings in the infrared is plotted.
6 # couplLambda=[0;-1;0]; # for 4th order polynomial
7 couplLambda=[0;-1;0;0;0;0;0]; # for 12th order polynomial
8 Nk=100000;disp=20;
9 couplLambda(3)=lambda;

10 k=linspace(10000,0,Nk);
11 #[coupl]=lsode("flowOpt4",couplLambda,k);
12 #[coupl]=lsode("flowCallan4",couplLambda,k);
13 [coupl]=lsode("flowOpt12",couplLambda,k);
14 xh=coupl(Nk-disp:Nk,:,:);
15 kh=k(Nk-disp:Nk);
16 plot(kh,xh(:,1),kh,xh(:,2),kh,xh(:,3));
17 legend(’E’,’omega**2’,’lambda’);
18 printf("E0 = \t %4.4f\n",coupl(Nk,1));
19 printf("E1 = \t %4.4f\n",coupl(Nk,1)+sqrt(coupl(Nk,2)));
20 endfunction

been adjusted to calculate the flow for the coupled systems of gauge, matter, and
ghost fields [9, 37–40]. A similar technique has been used to study gravity theo-
ries with local diffeomorphism invariance and to argue that gravity very probably
is an asymptotically safe theory with a non-trivial UV fixed point [41–43]. Also for
many supersymmetric quantum field theories a manifest supersymmetric flow can
be constructed in superspace [20, 33, 44, 45]. Supersymmetry relates the regulator
functions of the bosons and fermions and thus gives a new perspective on regulator
functions in theories with interacting bosons and fermions. One can investigate for
which parameter region the quantum systems are supersymmetric and for which re-
gion supersymmetry is broken. Implementing space time symmetries is not so much
an issue for functional renormalization group flow equations as it is for a lattice reg-
ularization.

The flexible functional method offers great potential for theoretical advances in
both hot and dense QCD, gravity, supersymmetry as well as many-body physics.
The method is somehow complementary to the ab initio lattice approach. In cases
where a lattice regularization based on a positive Boltzmann factor fails, for example
for gauge theories at finite density, the functional method may work. Thus it is
probably a good strategy to consider both methods when it comes to properties of
strongly coupled systems under extreme conditions.

12.8 Programs for Chap. 12

The octave-program in Listing 12.1 calculates the flow of the couplings Ek,ω
2
k

and λk in the LPA-approximation and the truncation with a6 = 0. The flow begins
at k = 105, but only the values of the couplings for k = 2 down to k = 0 are plotted.
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Listing 12.2 Called by program 12.1: optimized regulator and fourth-order polynomial

1 %\ref{truncflowanho.m}
2 %, optimal regulator, 4th order polynomial}
3 %,\label=flowOpt4.m]
4 function coupldot=flowOpt4(coupl,k)
5 ksquare=k*k;
6 P=1/(ksquare+coupl(2));xh=ksquare*P/pi;
7 coupldot(1)=xh-1/pi;
8 coupldot(2)=-xh*P*coupl(3);
9 coupldot(3)=-6*coupldot(2)*P*coupl(3);

10 endfunction

Listing 12.3 Called by program 12.1: Callan–Symanzik regulator and fourth-order polynomial

1 function coupldot=flowCallan4(coupl,k)
2 P=1/(k*k+coupl(2));
3 rootP=k*sqrt(P);
4 coupldot(1)=0.5*(rootP-1);
5 coupldot(2)=-0.25*rootP*P*coupl(3);
6 coupldot(3)=-4.5*coupldot(2)*P*coupl(3);
7 endfunction

Listing 12.4 Called by program 12.1: optimized regulator and 12th-order polynomial

1 function coupldot=flowOpt12(coupl,k)
2 a0=coupl(1);a2=coupl(2);a4=coupl(3);a6=coupl(4);
3 a8=coupl(5);a10=coupl(6);a12=coupl(7);
4 ks=k*k;numflow1
5 P=1/(ks+a2);P2=P*P;P2pi=ks*P2/pi;P3=P*P2;P4=P*P3;
6 a4s=a4*a4;a4q=a4s*a4s;a6s=a6*a6;
7 coupldot(1)=-a2*P/pi;
8 coupldot(2)=-a4;
9 coupldot(3)=-a6+6*a4s*P;

10 coupldot(4)=-a8+30*a4*a6*P-90*a4s*a4*P2;
11 coupldot(5)=-a10+(56*a4*a8+70*a6s)*P\
12 -1260*a6*a4s*P2+2520*a4q*P3;
13 coupldot(6)=-a12+(90*a4*a10+420*a6*a8)*P\
14 -(3780*a8*a4s+9450*a6s*a4)*P2\
15 +75600*a4s*a4*a6*P3-113400*a4q*a4*P4;
16 coupldot(7)=(132*a4*a12+924*a8*a8+990*a10*a6)*P\
17 -(8910*a10*a4s+83160*a4*a6*a8+34650*a6s*a6)*P2\
18 +(332640*a8*a4s*a4+1247400*a4s*a6s)*P3\
19 -6237000*a4q*a6*P4+7484400*a4q*a4s*(P4*P);
20 coupldot(2:7)=P2pi*coupldot(2:7);
21 endfunction

The functions defined in Listings 12.2, 12.3 and 12.4 are called by program 12.1
to calculate the flow for different regulators and truncation orders.
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Listing 12.5 Flow of effective potential in LPA

1 function flowpde(a4)
2 # Solves the partial differential equation for the
3 # flow of the effective potential by rewriting it
4 # as a system of coupled ode’s. Calls fa.m
5 global Nq;
6 global dqsquareinv;
7 global W;
8 Nq=151;L=5;Nk=800;
9 q=linspace(-L,L,Nq);

10 a2=-1;
11 qsquare=q.*q;
12 dq=2*L/(Nq-1);
13 dqsquareinv=1/(dq*dq);
14 k=linspace(800,0,Nk);
15 V=0.5*a2*qsquare+a4*qsquare.*qsquare/24;
16 Veff=lsode("fa",V,k);
17 u=Veff(Nk,:);
18 plot(q,V,’r’,q,u,’b’)
19 legend(’Vclass’,’Veff’);
20 [umin,index]=min(u);
21 upp=(u(index+1)+u(index-1)-2*u(index))*dqsquareinv;
22 printf("\nE0 = %4.4f\nE1 = %4.4f \n",umin,umin+sqrt(upp));
23 endfunction

Listing 12.6 Called by program 12.5: right hand side of ode

1 function xdot=fa(V,x)
2 global dqsquareinv;
3 global Nq;
4 global W;
5 xs=x*x;
6 W=dqsquareinv*(shift(V,1)+shift(V,-1)-2*V);
7 xdot=(xs./(xs+W)-1)/pi;
8 xdot(1)=0;
9 xdot(Nq)=0;

10 endfunction

The octave function 12.5 solves the partial differential equation for the scale-
dependent effective potential in (12.31). It calls the function defined in Listing 12.6.

12.9 Problems

12.1 (Weak-coupling expansion for anharmonic oscillator) In this exercise we solve
the truncated flow equations (12.35) for weak couplings λ/ω3 ) 1. First we intro-
duce dimensionless variables,

x = k

ω
, ek = Ek

ω
, ok = ωk

ω
and �k = λk

24ω3
.
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(a) Show that the truncated flow equations for the dimensionless variables read

dek

dx
=−o2

k

π

1

x2 + o2
k

,
do2

k

dx
=−�k

π

24x2

(x2 + o2
k)

2
,

d�k

dx
= 144�2

k

π

x2

(x2 + o2
k)

3
.

(b) For the harmonic oscillator with vanishing λ we have ek = 1/2, ok = 1 and
�k = 0. The initial conditions are ex→∞ = 0, ox→∞ = 1 and �x→∞ = λ/24ω3.
Thus for weak coupling the expansion has the form

ek = α0 + α1ε+ α2ε
2 + · · · ,

o2
k = 1+ β1ε+ β2ε

2 + · · · ,
�k = ε+ γ2ε

2 + · · ·

with ε = λ/24ω3 ) 1 and scale-dependent coefficient functions. Show that
these functions satisfy the differential equations

α̇0 =−P

π
, α̇1 =−x2P 2

π
β1, α̇2 = x2P 2

π

(
β2

1P − β2
)
,

β̇1 =−24x2P 2

π
, β̇2 = 24x2P 2

π
(2β1P − γ2), γ̇2 = 144

x2P 3

π
,

where we defined P ≡ 1/(1+ x2). The coefficient functions vanish for x→∞
and the first differential equation has the solution α(x)= 1/2− arctan(x)/π .

(c) Calculate β1, γ2 and β2 with an algebraic computer program. Insert the solutions
to find the functions α2 and α3.

(d) Prove that the coefficient functions have the following small-x expansions:

α0(x)∼ 1

2
− 1

π
x + 1

3π
x3 + · · · ,

α1(x)∼ 3

4
− 2πx3 + · · · ,

α2(x)∼−3

8

(
10− 29

π2

)
+ 8

(
3− 4

π2

)
x3 + · · · ,

β1(x)∼ 6− 8

π
x3 + · · · ,

β2(x)∼−12

(
3− 8

π2

)
+ 168

π
x3 + · · · ,

γ2(x)∼−9+ 48

π
x3 + · · · .

(12.114)
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(e) If we make a cruder truncation with λk = λ of equivalently with γ2 = 0, how
does the results change? Prove that in this case

α2(x)∼− 3

16

(
8+ 29

π2

)
+ 1

π3

(
15π2 + 16

)
x3 + · · · ,

β2(x)∼−2

(
3+ 16

π2

)
+ 96

π
x3 + · · · .

(12.115)

12.2 (Fixed-point solution and critical exponents) Write a program with your fa-
vorite algebraic computer system to find the fixed-point solution and the critical
exponents of the Z2 scalar field theory. You should be able to reproduce the plots in
Fig. 12.5 and the critical exponents in Table 12.4.

Appendix: A Momentum Integral

In this appendix we calculate the O(p2) contribution to the integral

F(p)=
∫

ddq ∂k
{
ZkRk(q)

}
G2

0(q)G0(p+ q) (12.116)

for the optimized regulator function (12.10). The integrand is only non-zero for
q2 ≤ k2 and in this region

∂k
{
ZkRk(q)

}
G2

0(q)=
((
k2 − q2)∂kZk + 2kZk

)
Δ2

0. (12.117)

To proceed we need to consider two cases: |p+ q| ≤ k and |p+ q|> k separately.

The Case |p + q| < k This is the region located inside of both spheres in
Fig. 12.11 where the Green function G0(q) = G0(p + q) = Δ0 is independent of
the integration variable q . Let us decompose this variable as q = q‖ + q⊥, where q‖
is parallel and q⊥ perpendicular to the fixed momentum p. Then the integral has the
form

I1 = Vol(Sd−2)Δ
3
0

∫
dq‖

∫
d|q⊥||q⊥|d−2((k2 − q2)∂kZk + 2kZk

)
, (12.118)

where q2 = q2‖ + q2⊥. The volume of the unit sphere Sd−2 ⊂ R
d−1 originates from

the integration over the directions of q⊥. Now we split the integration domain inside
of both spheres, the region marked gray in Fig. 12.11, into two spherical caps,

−k ≤ q‖ <−p

2
and 0 ≤ q2⊥ ≤ k2 − q2‖ ,

−p

2
≤ q‖ < k− p and 0 ≤ q2⊥ ≤ k2 − (p+ q‖)2.

The domain of integration in (12.118) is just the union of these two caps. After
a shift q‖ → q‖ − p in the integral over the second cap we are left with the one-
dimensional integral
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Fig. 12.11 Sketch of the
integration regions in
momentum space. Only
momenta inside of the ball
centered at the origin
contribute to the integral. The
Green functions are constant
in the gray region inside of
both spheres. Inside the
sickle-shaped light-gray
region G0(p, q) is
momentum dependent. The
two spheres intersect at the
lower-dimensional sphere
defined by {q∗‖ , q∗⊥} =
{−p/2, k2 − p2/4}

Vol(Sd−2)Δ
3
0

d − 1

∫ k

p/2
dq‖

{(4k2 − 4q2‖
d + 1

+ 2q‖p− p2
)
∂kZk + 4kZk

}

× (
k2 − q2‖

)(d−1)/2
.

Its second derivative with respect to p at p = 0 is

d2I1

dp2

∣∣∣∣
p=0

=−kdV (Bd)Δ
3
0∂kZk. (12.119)

The Case |p + q|< k This is the sickle-shaped region inside of the sphere cen-
tered at the origin but outside the displaced sphere, marked light-gray in Fig. 12.11.
The integral over this region can be written as a difference of two integrals as fol-
lows:

I2 =Δ2
0

(∫ k

−p/2
dq‖

∫ √
k2−q2‖

0
dq⊥h(q‖, q⊥)

−
∫ k−p

−p/2
dq‖

∫ √
k2−(q‖+p)2

0
dq⊥h(q‖, q⊥)

)
.

The integrand of both integrals is

h(q‖, q⊥)=
(k2 − q2‖ − q2⊥)∂kZk + 2kZk

Zk(q‖ + p)2 +Zkq
2⊥ + a2

.

It is convenient to shift the variable q‖ in the second integral by −p such that
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I2 =Δ2
0

(∫ k

−p/2
dq‖

∫ √
k2−q2‖

0
dq⊥h(q‖, q⊥)

−
∫ k

p/2
dq‖

∫ √
k2−q2‖

0
dq⊥h(q‖ − p,q⊥)

)
.

The second derivative of this integral with respect to p at p = 0 is given by

d2I2

dp2

∣∣∣∣
p=0

= kdV (Bd)Δ
4
0

(
a∂kZk + k2Zk∂kZk − 2kZ2

k

)
. (12.120)

Adding the two results (12.119) and (12.120) leads to the simple expression

d2F

dp2

∣∣∣∣
p=0

=−2kd+1V (Bd)Δ
4
0Z

2
k (12.121)

for the curvature of F(p) in (12.116) at the origin in momentum space.
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Chapter 13
Lattice Gauge Theories

According to present day knowledge all fundamental interactions in nature are de-
scribed by gauge theories. The best known example is electrodynamics with Abelian
symmetry group U(1). In contrast, the electroweak and the strong interactions are
modeled by gauge theories with the non-Abelian symmetry groups SU(2)× U(1)
and SU(3), respectively. In a sense, general relativity also represents a non-Abelian
gauge theory, albeit with a non-compact symmetry group [1, 2]. Continuum gauge
theories are dealt with in many excellent textbooks [3–6] and it is useful, but not a
necessity that the reader has some basic knowledge of these theories. For those who
are not acquainted with continuum gauge theories we summarized those properties
and concepts which are needed in the remaining chapters of this book.

The first systematic investigation of a lattice gauge theory goes back to F. WEG-
NER [7]. He examined Ising-like systems with local Z2-invariance. In Chap. 10
we already encountered the three-dimensional Z2 gauge theory as dual of the Ising
model and introduced the object that is known today in a more general setting as
Wilson loop. Three years after Wegner’s contribution K. WILSON formulated non-
Abelian gauge theories on a space-time lattice as possible discretization and reg-
ularization of continuum gauge theories [8]. Thereby he replaced the Lie-algebra
valued continuum gauge field by link variables with values in a compact Lie group
in a way that the discretized theory possesses a gauge symmetry for any size of the
lattice spacing. In a naive continuum limit where the lattice spacing tends to zero the
lattice action turns into the Yang–Mills action for the continuum field. He formu-
lated a useful and often used criterion for confinement based on the Wilson loop: if
the logarithm of the Wilson loop shows an area-law behavior then charged particles
are confined.

By working on a discrete space-time the path integral becomes finite-dimensional
and can be evaluated by stochastic simulation techniques such as the Monte Carlo
method. Shortly after the seminal work of Wilson the first numerical simulations
of pure lattice gauge theories in three and four dimensions were performed. At first,
this was done for the finite gauge group Z2 in [9] and later on for non-Abelian lattice
gauge theories with gauge groups SU(2) as well as SU(3) in [10, 11]. Observable
quantities such as particle masses and decay widths are calculated with the Monte
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Carlo method. Thereby gauge field configurations are generated with probabilities
proportional to e−S , where S is the lattice action. When one includes fermions then
the calculations are often expensive and can require the use of the largest com-
puters available. The simulations typically utilize algorithms based upon molecular
dynamics. For more introductory material on lattice gauge theories as presented in
this and the following chapters I recommend the textbooks [12–15] and the classic
review papers [16] and [17, 18].

13.1 Continuum Gauge Theories

In this section we summarize the relevant properties of gauge theories in the con-
tinuum. Thereby the emphasis is put on the underlying structures and principles.
We begin with the extremely successful gauge principle. For that purpose we con-
sider a scalar field φ with values in a vector space V with scalar product denoted by
(., .). The scalar product is left invariant when its arguments are transformed with
an element Ω of some symmetry group G. The most important example is V =C

n

with hermitian scalar product. Choosing an orthonormal basis φ is identified with
its components

φ =

⎛

⎜
⎜
⎝

φ1
φ2
...

φn

⎞

⎟
⎟
⎠ , φ† = (

φ∗1 , φ∗2 , . . . , φ∗n
)

(13.1)

and the scalar product of two fields is

(φ,χ)=
n∑

a=1

φ∗aχa. (13.2)

It is invariant under a simultaneous U(n) transformation of its arguments,

(φ,χ)= (Ωφ,Ωχ), Ω ∈U(n). (13.3)

Let us now assume that the components of φ are free fields with equal masses, such
that they all obey the Klein–Gordon equation,

(
�+ m2c2

�2

)
φa = 0. (13.4)

We follow the habit in high energy physics and use natural units �= c= 1. The field
equations (13.4) are the Euler–Lagrange equations of the Lorentz-invariant action

S =
∫

ddxL (φ, ∂μφ) with L = (
∂μφ, ∂

μφ
)−m2(φ,φ). (13.5)

Clearly, the Lagrangian density L is invariant under global U(n) transformations

φ(x)→ φ′(x)=Ωφ(x), Ω ∈U(n), (13.6)
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since the scalar product is invariant. The transformation φ →Ωφ is called global
transformation since it does not depend on the space-time point. Invariant La-
grangians can be constructed for symmetry groups G which leave a scalar product
invariant.

However, the Lagrangian density is not invariant under local gauge transforma-
tions, given by

φ(x)→ φ′(x)=Ω(x)φ(x), Ω(x) ∈G, (13.7)

since the derivatives in (13.5) act on a space-time independent Ω(x). But it is possi-
ble to extend a global symmetry to a local symmetry by coupling the charged scalar
field φ to a gauge potential Aμ. In the minimal coupling one replaces the partial
derivative ∂μ by the covariant derivative,

Dμ(A)= ∂μ − igAμ. (13.8)

Here g is the constant which couples the gauge field and the matter field. The two
objects on the right hand side should transform identically under Lorentz transfor-
mation. This means that the Aμ are components of a vector field A. Now we impose
the important condition that Dμ(A)φ transforms exactly like the field φ under gauge
transformation:

Dμ

(
A′)φ′(x)=Ω(x)Dμ(A)φ(x). (13.9)

Inserting the transformation of φ this condition is equivalent to

Dμ

(
A′)=ΩDμ(A)Ω

−1 (13.10)

and this transformation rule for the covariant derivative is fulfilled if

Aμ →A′
μ =ΩAμΩ

−1 − i

g
∂μΩΩ−1. (13.11)

For notational simplicity we did not write the space-time dependence of the fields
and gauge transformation. If Ω(x) takes its values from a Lie group G then
∂μΩΩ−1 is in the Lie algebra g of the group. The transformation formula suggests
that iAμ should be in the Lie algebra as well such that all three terms in (13.11)
are (up to a factor i) Lie-algebra valued. For the gauge group U(n) the Lie algebra
contains all anti-hermitian matrices.

The antisymmetric field strength tensor is defined as the commutator of two co-
variant derivatives,

Fμν(A)= i

g

[
Dμ(A),Dν(A)

]= ∂μAν − ∂νAμ − ig[Aμ,Aν]. (13.12)

The transformation rule (13.10) for the covariant derivatives implies that it trans-
forms according to an adjoint representation of the gauge group,

Fμν(x)→Ω(x)Fμν(x)Ω
−1
x . (13.13)

Similarly as in electrodynamics we square the field strength tensor to obtain a
Lorentz-invariant contribution to the Lagrangian density. Since FμνFμν is not gauge
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invariant—it transforms according to the adjoint representation—we take its trace
and end up with the following Lorentz and gauge-invariant Lagrangian density:

L (φ,Aμ)=−1

4
tr
(
FμνF

μν
)+ (

Dμφ,D
μφ

)−m2(φ,φ)=L
(
φ′,A′

μ

)
(13.14)

for the coupled system of scalar fields and gauge fields. The first Yang–Mills term
generalizes the Maxwell term in electrodynamics. The remaining terms are obtained
from (13.5) by the substitution ∂μ →Dμ.

Let us specialize to the Abelian gauge group U(1) for which the components Aμ

of the vector potential are real fields. For an Abelian gauge theory the field strength
is gauge invariant, since Ω in (13.13) commutes with Fμν , and no trace is needed
in (13.14). Thus we obtain the Lagrangian density of the vector potential in electro-
dynamics coupled to a charged scalar field. Upon quantization the theory based on
(13.14) describes photons and charged scalar particles in interaction. In Chap. 15 we
shall see how one couples fermions to the gauge field. If φ is replaced by the elec-
tron field, then the resulting quantized gauge theory is quantum electrodynamics,
one of the most successful theories in theoretical physics.

The electroweak interaction, described by the Salam–Weinberg model, is based
on the non-Abelian gauge group SU(2)×U(1). In this theory the scalar field φ is a
complex doublet and transforms under both factors of the gauge group. The field φ

is very important since after condensation it is responsible for the masses of elemen-
tary particles. Finally, the theory of strong interaction, quantum chromodynamics,
is a gauge theory with gauge group SU(3). The matter sector of this theory contains
quarks—fermions which are confined within baryons and mesons and which cannot
be liberated. Many quantitative results about this strongly interacting theory stem
from numerical simulations of the corresponding lattice gauge theory.

Let us discuss in more detail the minimal coupling of matter fields to the
gauge field. In general the vector space V carries a representation R of the gauge
group, in which case the matter field transforms according to this representation,
φ′ =R(Ω)φ. For example, for the gauge group SU(2) a real field φ with three com-
ponents could transform according to the three-dimensional triplet-representation.
The important covariance condition (13.6) is automatically fulfilled, if we choose

Dμφ = ∂μφ − igR∗(Aμ)φ (13.15)

as covariant derivative. Here R∗ is the representation of the Lie algebra, induced
by the group representation R. Thus the commutator of covariant derivatives in the
representation R is given by

i[Dμ,Dν] = gR∗(Fμν). (13.16)

Certain properties of quantized gauge theories may depend on the representation
of the gauge group. For example, locally the gauge groups SU(2) and SO(3) are
identical, but this does not imply that the corresponding quantized gauge theories
show the same phases and phase structure [19].

Finally let us summarize the main ingredients of a gauge theory. A gauge theory
is determined by
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• the gauge group G,
• the matter fields including the representations under which they transform,
• the universal coupling constant g.

Unfortunately that is not all. We also must specify the masses and self-couplings of
the matter fields. The Salam–Weinberg theory contains additional parameters, for
example the elements of the KMS matrix.

13.1.1 Parallel Transport

A lattice gauge theory has parallel transporters between neighboring sites as fun-
damental fields. These transporters are defined in the continuum theory, and their
definition is carried over to the corresponding lattice theory. Here we consider a
scalar field in the defining representation, i.e. φ →Ωφ. The field is called covari-
antly constant if

Dμφ = 0, i.e. ∂μφ = igAμφ. (13.17)

With (13.12) this implies the integrability condition

0 = [Dμ,Dν]φ =−igFμν φ.

In a non-Abelian gauge theory Fμν(x) is Lie-algebra valued and φ(x) is a vector
with n components. For a generic field strength these n algebraic equations have no
non-trivial solution.

Let us instead study the equation of covariant constancy along a path Cyx from
x to y. The parametrized path x(s) with s ∈ [0,1] fulfills

x(0)= x and x(1)= y.

The field φ is covariantly constant along the path if

0 = ẋμDμφ = dφ(s)

ds
− igAμ

(
x(s)

)
ẋμ(s)φ(s), (13.18)

where we used the shorthand notation φ(s) for φ(x(s)). If we interpret the curve
parameter s as time, then the equation above is a time-dependent Schrödinger equa-
tion with time-dependent “Hamiltonian” ∼Aμ(x(s))ẋ

μ(s). Hence, the solution of
the system of ordinary differential equations may be written as

φ(s)=P exp

(
ig

∫ s

0
duAμ

(
x(u)

)
ẋμ(u)

)
φ(x), (13.19)

where P indicates the ordering with respect to the curve parameter s. For non-
Abelian fields this path ordering is necessary since the Lie-algebra valued Hamil-
tonians at different points on the curve do not commute. Evidently, path ordering is
obsolete for Abelian gauge groups.

Setting s = 1 we obtain the parallel transporter along the curve Cyx ,

φ(y)=U(Cyx;A)φ(x), U(Cyx;A)=P exp

(
ig

∫ 1

0
ds Aμẋ

μ

)
. (13.20)
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The components of the gauge potential define a one-form, A=Aμdx
μ, and the line

integral in the exponent is just the integral of this one-form along the path Cyx . Thus
for an arbitrary path C we may write

U(C ;A)=P exp

(
ig

∫

C
A

)
. (13.21)

For a Lie-algebra valued potential this parallel transporter along C is an element of
the gauge group.

Composition of Paths

If the path C connects x and y and C ′ connects y and z then the composite path
C ′ ◦C (first C and afterwards C ′) connects x and z. The parallel transporter along
the composite path is just the product of the individual transporters,

U
(
C ′ ◦C ;A)=U

(
C ′;A)

U(C ;A). (13.22)

This property follows from the uniqueness of the solution of the system of ordinary
differential equation (13.18) for fixed end points.

Stokes’ Theorem

The parallel transport between two points depends on the path. If C ′ and C ′′ are
two different paths from x to y, then C = C ′−1 ◦C ′′ is a loop beginning and ending
at x. For an Abelian theory Stokes’ theorem implies

U(C ;A)= exp

(
ig

∮

C=∂S
A

)
= exp

(
ig

∫

S
F

)
, (13.23)

where S is a surface enclosed by C and F denotes the field strength two-form

F = 1

2
Fμν dx

μ ∧ dxν = dA. (13.24)

Unfortunately, no comparable simple generalization for non-Abelian gauge theories
is known, although a non-Abelian Stokes theorem exists in the mathematical litera-
ture [20, 21]. There are not many interesting applications of this theorem in physics.
Note, however, that, mathematically, the theorem implies that for F = 0 the parallel
transport is path-independent as long as the considered paths may be deformed into
each other.

Gauge Transformation

Parallel transporters are not gauge invariant, they are only gauge covariant. We shall
prove that under a gauge transformation a transporter along Cyx transforms as

U
(
Cyx;A′)=Ω(y)U(Cyx;A)Ω−1

x . (13.25)
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It immediately follows that for an arbitrary loop the trace of the associated trans-
porter

trU
(
C ,A′)= trU(C ,A) (13.26)

represents a gauge-invariant quantity—the Wilson loop. The set of all Wilson loops
form an overcomplete system of gauge-invariant functions on configuration space
[22].

Let us now prove the important result (13.25). The parallel transport belonging
to the right hand side of (13.25) is given by

φ′
(
x(s)

)=Ω
(
x(s)

)
exp

(
ig

∫ s

0
Aμẋ

μ ds

)
Ω−1
x φ(x). (13.27)

Differentiating with respect to the parameter s we obtain the Schrödinger equation

dφ′(s)
ds

= (
∂μΩΩ−1 + igΩAμΩ

−1)|x(s)ẋμ φ′(s)= igA′
μ(s)ẋ

μ(s)φ′(s),

which has the unique solution

φ′
(
x(s)

)=P exp

(
ig

∫ s

0
ds A′

μẋ
μ

)
φ(x). (13.28)

A comparison of (13.27) with (13.28) for s = 1 yields the transformation rule
(13.25).

Matter Fields

The matter field φ(x) transforms under a gauge transformation into Ω(x)φ(x). It
follows immediately that the bilinear expression

(
φ(y),U(Cyx;A)φ(x)

)
(13.29)

is gauge invariant. However, for a non-vanishing Fμν this expression depends on
the path from x to y. A complete list of gauge-invariant composite fields in a theory
with scalar and gauge fields is presented in [23].

From this point on we switch to the Euclidean formulation of gauge theories.
After a Wick rotation from the Lorentzian to the Euclidean signature the Lagrangian
density of the Higgs model (13.14) transforms into

LE = 1

4
trFμνFμν +

(
Dμφ,D

μφ
)+m2(φ,φ). (13.30)

The connection between gauge potential and field strength as well as the definitions
of the covariant derivatives remain unchanged. In Euclidean theory the metric is δμν
and this implies, for example, Fμν = Fμν or FμνFμν =∑

F 2
μν .
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13.2 Gauge-Invariant Formulation of Lattice Higgs Models

In this section we will formulate a theory with local gauge invariance on a lattice Λ
with lattice sites {x} and lattice spacing a. First we discretize a scalar field theory
such that the resulting theory on the lattice remains invariant under global gauge
transformations φx →Ωφx . The kinetic part of the lattice Lagrangian will contain
nearest neighbor terms

(φx,φy). (13.31)

These terms are invariant under global, but not under local transformations,

φx → φ′x =Ωx φx, x ∈Λ,Ωx ∈G, (13.32)

since the field at different sites enters the scalar product (13.31). Before comparing
the field at different points we should parallel transport it from one point to the other.
This suggests that the correct nearest neighbor coupling reads

(φx,U〈x,y〉φy), (13.33)

were U〈x,y〉 is the parallel transporter from y to its neighbor x. This expression is in-
variant under local gauge transformations if the transporter transforms as expected,

U〈x,y〉 →U ′〈x,y〉 =ΩxU〈x,y〉Ω−1
y . (13.34)

In general the parallel transport depends on the chosen path. On the lattice we may
think of U〈x,y〉 as the parallel transporter along the link,

U〈x,y〉 = P exp

(
ig

∫ x

y

Aμ(z)dzμ
)
= 1+ ig(x − y)μAμ(x)+O

(
a2), (13.35)

although this interpretation is not of much relevance on the lattice. Inserting this
expansion into the difference between the field at a given lattice site and on a neigh-
boring site, parallel transported to the given site, we obtain the expansion

φx −U〈x,y〉φy = (x − y)μDμφ(x)+O
(
a2). (13.36)

Taking the square of this relation and bearing in mind that nearest neighbors are
separated by the lattice spacing a yields (no sum over μ)

a2(Dμφ(x),Dμφ(x)
)= (φx,φx)+ (φy,φy)

− 2�(φs,U〈x,y〉φy)+O
(
a3). (13.37)

These considerations suggest that we choose the parallel transporters U〈x,y〉 between
neighboring sites rather than the vector potential Aμ(x) as the basic object for con-
structing an invariant action and path integral. Since all relevant symmetry groups
are compact1 this means that the dynamical variables on the lattice {Ux,μ} take their
values in a compact group. This will be relevant for the functional integrals of lattice
gauge theories.

1Gravity is an exception.
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Fig. 13.1 The elementary
variables are the parallel
transporters U〈x,y〉 between
nearest neighbors. The
parallel transporter along a
path Cyx from x to y is the
product of elementary
variables on the oriented links
along the path. A plaquette is
characterized by four sites
x, y,u and v

13.2.1 Wilson Action of Pure Gauge Theories

Our first task is to construct an action that describes the dynamics of the gauge
variables U〈x,y〉 ∈G defined on the oriented links of the lattice. A gauge field con-
figuration on the lattice is a map from the set of directed links E into G,

U :E = {�}→G. (13.38)

The parallel transporter U(C ) along an arbitrary path C on the lattice is the product
of the elementary transporters assigned to the directed links along the path:

U(Cyx)=U�n · · ·U�3U�2U�1 ,

cf. Fig. 13.1. Similarly as in the continuum we have

U−1(C )=U
(
C−1) e.g. U−1

〈x,y〉 =U〈y,x〉. (13.39)

The Lagrangian density of a continuum Yang–Mills theory contains the square of
the field strength. The field strength is interpreted as curvature and determines how
much the matter field changes (per area) when it is parallel transported along an
infinitesimally small loop. Naturally, there is no infinitesimal transport on a lattice.
The most elementary transport along a closed path results from the product of the
transporters along the edges of an elementary plaquette, which is defined by its
corners x, y,u and v:

Up =U〈x,v〉U〈v,u〉U〈u,y〉U〈y,x〉, (13.40)

see Fig. 13.1. Similarly as in Sect. 10.4 we use the notation

Up =
∏

�∈∂p
U�. (13.41)

This notation does not reveal the dependence of Up on x. Sometimes it is convenient
to use an alternative notation: if x and x + eμ are neighboring sites then we denote
the parallel transporter from x to x + eμ by Ux,μ. Similarly, a plaquette is char-
acterized by a point and two (positive) directions, p = (x,μ, ν), and we can write
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Up = Ux,μν . The plaquette variable Ux,μν transforms under gauge transformations
according to

Ux,μν →ΩxUx,μνΩ
−1
x . (13.42)

To motivate Wilson’s choice of a gauge-invariant and real lattice action we introduce
a small lattice spacing a and write

Ux,μ = eigaAμ(x), (13.43)

where the interpolating field Aμ(x)= Aa
μ(x)Ta takes its values in the Lie algebra.

With the help of the Baker–Hausdorff formula [24]

eAeB = eA+B+
1
2 [A,B]+··· (13.44)

we rewrite the product of parallel transporters around a plaquette p as follows:

Ux,μν = e−igaAν(x)e−igaAμ(x+aeν)eigaAν(x+aeμ)eigaAμ(x)

= e−igaAν(x)e−igaAμ(x)−iga2∂νAμ(x)+O(a3)

× eigaAν(x)+iga2∂μAν(x)+O(a3)eigaAμ(x)

= eiga2(∂μAν(x)−∂νAμ(x)−ig[Aμ(x),Aν(x)])+O(a3) = eiga2Fμν(x)+O(a3).

(13.45)

Only terms up to order a2 are considered in the exponent. This yields

Ux,μν +U−1
x,μν ≈ 2 · 1− ga4F 2

μν(x)+O
(
a6). (13.46)

Since the relevant term is O(a4) you would think that all terms up to this order in
the exponent will contribute. However, for U = exp(iT ) we obtain

U +U−1 = 2− T 2 +O
(
T 4).

It follows that only the leading term of order a2 in T contributes to the fourth order
term in U +U−1. This naive continuum limit motivates the following choice for the
action of a Euclidean gauge theory with unitary gauge group:

Sgauge = β
∑

p

tr

{
1− 1

2

(
Up +U†

p

)}
, β = 2

Ng2
. (13.47)

The sum extends over all V d(d − 1)/2 elementary plaquettes of the lattice and
the factor 1/N in the gauge coupling β takes into account that the link variables
are N -dimensional matrices. The non-negative action is minimal for configurations
with Up = 1 for all p. These “vacuum configurations” have zero action. For real or
pseudo-real groups like SU(2) the trace of U is real and the plaquette action simpli-
fies to β tr(1−Up). For the finite gauge group Zn we recover the action (10.55).

The Wilson action (13.47) approximates the continuum Yang–Mills action up to
an error of order O(a2), similarly to the trapezoidal rule which approximates an
integral up to order O(a2). A natural question is whether there is something like
Simpson’s rule with an error of order O(a4) in lattice gauge theory. Such improve-
ments of the Wilson action have been suggested. One improvement based on the
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renormalization group method was given by K. Wilson himself [25]. Another im-
provement program based on perturbation theory was initiated by K. Symanzik [26]
and further developed in [27]. A lattice action which gives two-loop scaling was
constructed in [28].

Now we can write down a gauge-invariant action for the Higgs model on a lattice.
For the gauge fields we choose the Wilson action (13.47). For the scalar field we
take the right hand side of (13.37), summed over all lattice sites, since this sum
approximates the kinetic term in (13.30). Thereby the terms (φx,φx) and (φy,φy)

can be absorbed in the potential term. Hence as gauge-invariant interaction between
the gauge field and scalar field we take

Sm =−κ
∑

〈x,y〉
�(φx,U〈x,y〉φy) (13.48)

with hopping parameter κ . Thus we end up with the Yang–Mills–Higgs action

SYMH(U,φ)= Sgauge(U)+ Sm(U,φ)+
∑

x

V (φx) (13.49)

with an invariant potential for the scalar field, V (Ωφ)= V (φ).
We have argued that on a lattice the {U�} should be taken as dynamical variables.

Thus, the formal integration over all gauge potentials in the continuum theory turns
into an integration over the group valued fields on the links and we end up with the
following functional representation of the partition function:

Z(β,κ)

∫ ∏

x

dφx
∏

�

dU� e−SYMH(U,φ). (13.50)

Since the resulting lattice theory should be gauge invariant we better choose an
invariant integration,

d(Ωφ)= dφ, d
(
Ω ′UΩ−1)= dU. (13.51)

Invariant measures on compact groups exist and are studied in Chap. 14.

13.2.2 Weak and Strong Coupling Limits of Higgs Models

Here we will consider the four simplifying limits of the Higgs model in which
β → 0 or ∞ and κ → 0 or ∞. Along the way we will learn about selecting gauges.

Vanishing β and Unitary Gauge

In this limit the Wilson term is absent and it is a trivial limit of the theory. This
is most easily seen in the unitary gauge which can be achieved for all models for
which the scalar field can be gauge transformed into a fixed direction defined by a
constant unit vector φ0,

φx = ρxΩxφ0 with Ωx ∈G. (13.52)
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This condition fixes the gauge transformations {Ωx} completely in case the little
group of φ0

H = {Ω ∈G |Ωφ0 = φ0} (13.53)

is a trivial subgroup H = {1} of the gauge group. Now we use the gauge invariance
of the action and measure to rewrite the partition function as

Z =
∫ ∏

x

dφx
∏

�

dU� e−Sgauge(U
′)−Sm(U

′, ρφ0)−V (ρ) (13.54)

with gauge transformed link variables U ′〈x,y〉 = Ω−1
x U〈x,y〉Ωy . But since dU� is

gauge invariant we may skip the prime at U ′ in the integrand. Since the integrand
only depends on ρ and U we may change variables and find

Z = (VolG/H )
V

∫ ∏

x

dρx ρ
n−1
x

∏

�

dU� e−Sgauge(U)−Sm(U,ρφ0)−V (ρ), (13.55)

where the first factor contains the volume of the coset space G/H and n denotes
the number of φ-components. If we freeze the length ρ of the scalar field by setting
exp(−V (ρ))= δ(ρ − 1), we are dealing with gauged nonlinear sigma models. For
these models the integration over the radial modes {ρx} yields 1 and for β = 0 the
partition function Z factors into a product of independent terms and thus is trivial,

Z
β→0−→ (VolG/H )

V

(∫
dUeκ(φ0,Uφ0)

)|E|
, (13.56)

where |E| is the number of links on the lattice. The free energy density is an analytic
function of κ given by a simple group integral.

Infinite β and Axial Gauge on Periodic Lattices

Again we impose periodic boundary conditions in all directions and thus may view
the hyper-cubic lattice as torus. In the limit β =∞ the system is most comprehensi-
ble in an axial-like gauge where one uses the gauge freedom to choose as many U ’s
as possible to be the unit matrix. In a first step of the gauge fixing all time-like link
variables Ux,0 for t > 1 are gauged to the unit element. These are the thick vertical
links in Fig. 13.2. The remaining time-like link variables at t = 1 cannot be gauged
to the unit element and in the axial gauge they are equal to the Polyakov loops

Px ≡
N∏

t=1

U(t,x),0
gf=U(1,x),0. (13.57)

These particular Wilson loops wind around the periodic time direction and will be
relevant at finite temperatures. The gauge transformations Ωx in the time slice t = 1
are not used for this first gauge fixing step. In a second step we use these gauge
transformations to fix all variables on links in the x1-direction and with x1 > 1 in
the time slice t = 1 to the unit element. These are the thick links at the bottom of the
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Fig. 13.2 In the axial-like
gauge the variables on the
thick marked links are fixed
to the unit element

cube in Fig. 13.2 pointing towards the x1-direction. The gauge transformations Ωx

in the slice t = x1 = 1 are not used for this second gauge fixing step but in the third
step were one fixes the variables in this slice with x2 > 1 to the unit element. After
these three steps all variables on the thick links in Fig. 13.2 are gauge fixed to the
unit element. This is almost a complete gauge fixing—only the gauge transformation
at the point (1,1,1) remains unfixed and acts as a residual global gauge symmetry.
After gauge fixing the number of links with Ux,μ = 1 is

N2(N − 1)+N(N − 1)+ (N − 1)=N3 − 1 (13.58)

in three dimensions and more generally V − 1 in arbitrary dimensions. This is ex-
actly the number of gauge transformations {Ωx} minus the residual gauge transfor-
mation.

In the limit β →∞ we require that each term of Sgauge be minimized which
means that all plaquette variables occurring in the Wilson action are the unit matrix.
Let us see what this implies for a gauge fixed configuration in three dimensions:

Considering the time-space plaquettes of a gauge fixed configuration we see that
the link variables in x1 and x2-directions are t-independent. Considering the space
plaquettes in the slice t = 1 we conclude that the link variable in x2-direction are
also x1-independent. Thus we are left with the non-trivial variables Ux,0 in the slice
t = 1, the variables Ux,1 in the slice x1 = 1 and the variables Ux,2 in the slice x2 = 1.
Recalling that all other variables are the identity one concludes that the variables in
each slice are constant. The same reasoning applies in d dimensions and one is left
with just d constant group elements. In four dimensions:

Ux,0 ≡P if x = (1, x1, x2, x3),

Ux,1 ≡U1 if x = (t,1, x2, x3),

Ux,2 ≡U2 if x = (t, x1,1, x3),

Ux,3 ≡U3 if x = (t, x1, x2,1).

(13.59)
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Actually for a gauge theory with open boundary conditions we can gauge fix all link
variables to the unit element such that the Higgs model reduces to a spin model for
the scalar field,

Z
β→∞−→ C

∫ ∏

x

dφx exp

(
−κ

∑

〈x,y〉
(φx,φy)

)
. (13.60)

Vanishing κ

In this limit the matter field decouples and we are left with a pure gauge theory. This
is a non-trivial limit and much of the rest of the present chapter concerns this limit.

The Limit κ → ∞
This limit is most easily studied in the unitary gauge. In this gauge we require that
(φ0,Uφ0) takes its maximum value on each link which implies Uφ0 = φ0. If the
little group H of φ0 is trivial then all link variables must be the identity. If we freeze
the length of the scalar field then no degrees of freedom are left. If the little group
is non-trivial then the limiting theory is a pure gauge theory with gauge group H .

13.3 Mean Field Approximation

First we discuss the mean field approximation for pure gauge theories. Our starting
point is the variational characterization of the free energy

F = inf
P

(∫
dP(U)Sgauge(U)− SB(P )

)
. (13.61)

In the mean field approximation, as described in Chap. 7, dP(U) is assumed to
be a product measure with associated Boltzmann entropy SB. We use the Wilson
action Sgauge in the variational principle. In spite of a priori difficulties, such as
Elitzur’s theorem discussed in Sect. 13.5, this simple approximation allows for a
first exploration of the phase diagram. We choose the non-invariant product measure

dP(U)=
∏

�

dν�(U�), dν(U)= p(U)dU, (13.62)

where dU denotes the invariant Haar measure on the gauge group (as discussed in
Chap. 14) and p is the probability density

p(U)= 1

z(h)
exp

(
h

N
� trU

)
, (13.63)

normalized with the single-link partition function

z(h)= ev(h) =
∫

dU exp

(
h

N
� trU

)
= 1+O

(
h2). (13.64)



13.3 Mean Field Approximation 309

Fig. 13.3 The free energy
per link fmf/d of the Z2
gauge theory in the mean field
approximation. The minimum
jumps at (d − 1)β∗ ≈ 1.3776

In matrix notation, the mean value is proportional to the unit matrix [29]

〈U 〉h =
∫

dν(U)U = v′(h)1. (13.65)

The Boltzmann entropy is the number of links dV times the single-link entropy

sB =−
∫

dν logp = ν(h)− hν′(h). (13.66)

The expectation value of Sgauge for the product measure is proportional to the num-
ber of plaquettes V d(d − 1)/2 times the average single plaquette action,

〈Up〉h =
∫

dν1(U1) · · ·dν4(U4)� tr(Up)=Nv′4(h). (13.67)

Inserting the average action and entropy into (13.61) one obtains the mean field free
energy per link,

fmf

d
= inf

h

(
hv′(h)− v(h)− 1

2
βN(d − 1) v′4(h)

)
, (13.68)

where the function ν(h) is the single-link free energy defined in (13.64) and hence
a convex function with a minimum at the origin where it behaves as h2. Since the
term v′4(h) behaves as h4 the minimization always leads to the solution h= 0, and
this minimum is unique for small β . As β increases this minimum does not remain
the lowest one.

13.3.1 Z2 Gauge Model

For the gauge group Z2 the single site free energy is v(h)= log cosh(h) and

fmf

d
= inf

h

(
h tanh(h)− log cosh(h)− 1

2
β(d − 1) tanh4(h)

)
. (13.69)

The behavior of the free energy density for different values of β is displayed in
Fig. 13.3. At the critical value (d − 1)β∗ ≈ 1.3776 the absolute minimum suddenly
changes its location as depicted in Fig. 13.3 and this jump signals a first order tran-
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sition at β∗. In four dimensions we find β∗ = 0.4592 to be compared with the exact
value 0.44069 known from self-duality, see Table 10.3. The transition is known to
be of first order as predicted by the mean field approximation. In three dimensions
the mean field yields β∗ = 0.6888 to be compared with the value 0.7613, known
from duality, see Table 10.2. But since the three-dimensional Z2 gauge theory is
dual to the Ising model the transition is in fact a second order transition.

13.3.2 U(1) Gauge Theory

For this gauge theory z(h) = I0(h) and the corresponding mean field free en-
ergy density looks similar as in Fig. 13.3 and signals a first order transition at
(d − 1)β∗ = 3.6460. This yields the mean field critical gauge coupling β∗ = 1.215
in four dimensions. High precision MC simulations, supplemented by a finite size
analysis, indeed spotted a weakly first order transition at β∗ = 1.011133 [30, 31].

13.3.3 SU(N) Gauge Theories

The upper critical dimension for non-Abelian gauge theories should be four, where
the theory becomes asymptotically free. Above the critical dimension we can trust
the mean field approximation. To determine fmf of SU(N) gauge theories we need
the single-link partition function, which is a sum of products of modified Bessel
functions [32, 33],

zSU(N)(h)=
∑

n∈Z
det

⎛

⎜⎜
⎝

In In+1 · · · In+N−1
In−1 In · · · In+N−2
...

...
...

In−N+1 In−N+2 · · · In

⎞

⎟⎟
⎠

(
h

N

)
. (13.70)

The infinite sums entering v = log z and its derivative (here one uses Bessel func-
tion identities) can be evaluated with octave. The resulting fmf(h) of the gauge
group SU(2) in the vicinity of the critical gauge coupling, (d − 1)β∗ = 4.2394 is
depicted in Fig. 13.4. As expected, the mean field approximation predicts a first
order transition at some critical gauge coupling β∗. In five dimensions β∗ ≈ 1.0598,
which agrees well with numerical simulations which find a first order transition at
β∗ = 0.82. In four dimensions the mean field approximation fails. There is no evi-
dence for any transition in numerical simulations.

13.3.4 Higgs Model

For a lattice Higgs model with normalized scalar field the mean field free energy per
link is

fmf

d
= inf

h

(
(h− κ)v′(h)− v(h)− 1

2
βN(d − 1) v′4(h)

)
. (13.71)
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Fig. 13.4 The free energy
per link fmf/d of the SU(2)
gauge theory in the mean field
approximation. The minimum
jumps at (d − 1)β∗ ≈ 4.2394

Fig. 13.5 The free energy
fmf/d per link of the gauged
Ising model in the mean field
approximation. Shown are the
energies for three pairs of
critical parameters (κ∗, β∗)
for which the two minima are
degenerate. The first order
transitions becomes weaker
and finally becomes a second
order transition when κ∗
increases

For small h it behaves as −2cκh+ ch2 +O(h4) with some positive constant c such
that the origin ceases to be a minimum for a non-vanishing hopping parameter κ .
With increasing κ the two minima of the free energy approach each other and the
first order transition becomes weaker as depicted in Fig. 13.5. At the critical point
(κ∗, β∗)≈ (0.41,0.668) the two minima merge to one minimum.

13.4 Expected Phase Diagrams at Zero Temperature

Consider a lattice Higgs model with scalar field in a fundamental representation of
the gauge group. For κ = 0 the model reduces to a pure gauge theory and for a dis-
crete gauge group we expect a phase transition at some critical hopping parameter.
In three dimensions it is a second order transition and in four dimensions a first order
transition. For a non-Abelian gauge theory there is no such transition in either three
or four dimensions. For β =∞ the Higgs model collapses to a spin model with
global symmetry. Generically there will be a second order phase transition from a
symmetric phase at large κ to a spontaneously broken phase at small κ . For β = 0
the theory is analytic in κ and there is no phase transition.

For non-zero but small β OSTERWALDER and SEILER proved that the expansion
in powers of β exists with a finite radius of convergence, and that in this strong
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Fig. 13.6 Sketch of phase
diagram for SU(2) gauge plus
fundamental scalars. The
Osterwalder–Seiler–
Fradkin–Shenker theorem
says that local observables are
analytic in the gray region

coupling phase the theory is confining [34]. Their proof is combinatoric in nature.
It is reassuring though not very surprising that this is the case since most theories
are analytic in the high temperature phase. Later on we will show that the Wilson
loop obeys an area law in the strong coupling region. Finally, for κ =∞ the Higgs
model has no dynamics if the unitary gauge is a complete gauge fixing. If it is not
a complete gauge fixing then one is left with a pure gauge theory with gauge group
H = {Ω ∈G|Ωφ0 = φ0}. Hence we do not expect a phase transition at κ =∞ for
a trivial or non-Abelian H . On the other hand, if the little group H is discrete then
there will be a second order transition in three dimensions and a first order tran-
sition in four dimensions. There exists a generalization of the Osterwalder–Seiler
theorem due to FRADKIN and SHENKER, which states that for a scalar field in a
fundamental representation the Higgs model is analytic for sufficiently large κ [35].
The two theorems together imply that in the coupling constant plane there is always
a path from a point β,κ ) 1 deep in the confinement region, where the Wilson loop
obeys an area law, to a point β,κ � 1 in the Higgs phase where the Wilson loop
obeys a perimeter law, such that the expectation values of all local, gauge-invariant
observables vary analytically along the path. This means that the Higgs phase and
the confining phase are smoothly connected and that they are as different as a liq-
uid is from a gas. When the Higgs fields transform according to a non-fundamental
representation then a phase boundary may exist. This is the case for SU(N) with all
Higgs fields in the adjoint representation and for U(1) with all Higgs fields in the
charge-N (N > 1) representation.

The SU(2) Higgs model with fundamental scalars has been studied by Monte
Carlo techniques, and the situation is depicted schematically in Fig. 13.6. One
finds that for intermediate values of β certain observables vary rapidly with the
coupling, but still analytically in the thermodynamic limit. This is interpreted as a
crossover [36]. For larger values of β a line of probably first order transitions are
seen. At κ =∞, marked by a dot in the figure, the transition must be second order.
For a further discussion and an interpretation of these results you may consult the
textbook [37].

The Z2 theory has a similar phase diagram. A crucial difference is that at κ = 0
the resulting pure gauge model shows a first order transition at some critical β .
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Fig. 13.7 Schematic plot of
the phase diagram of the Z2
gauged Ising model. The
dashed lines represent a first
order phase transition, and the
continuous line represents a
second order transition. The
critical point is marked with
C and the triple point by T

The diagram is shown schematically in Fig. 13.7. The three transition lines meet at
the triple point and split the phase space into three regions. Again the phase diagram
includes familiar limits. In the limit β →∞ the gauge degrees of freedom disappear
and the system reduces to that of a four-dimensional Ising model with a second
order transition which is seen in the expectation value 〈sxU〈x,y〉sy〉. This second
order line is of Ising type all the way to the triple point T . On the κ = 0 axis the
system reduces to a pure gauge theory and the expectation value of the plaquette
variable 〈Up〉 shows a first order transition. This behavior continues all the way up
to the triple point. A first order line seen in both expectation values is then formed
and ends with the critical point C [39].

13.5 Elitzur’s Theorem

The phenomenon of spontaneously broken symmetries happens in large macro-
scopic systems where the breaking of a global symmetry involves a macroscopic
number of degrees of freedom. This is not the case for a local gauge symmetry. The
quantum fluctuations tend to smear the ground-state wave function of the system
homogeneously over the whole orbit under the group. This results in

Theorem 13.1 (Elitzur) A local gauge symmetry cannot break spontaneously. The
expectation value of any gauge non-invariant local observable must vanish.

Elitzur’s original proof in [38] applies to Abelian gauge theories but was later
extended to non-Abelian models [40]. The proofs of Elitzur’s theorem are all based
on the fact that inequalities which hold for any field configuration continue to hold
after integrating with respect to a positive measure. In fact, positivity of the measure
and gauge invariance are sufficient to prove the theorem. The theorem means that
there is no analog of a magnetization: expectation values of a spin or link variables
are zero, even if we introduce an external field (which explicitly breaks gauge in-
variance) and then carefully take first the infinite volume limit, and then the h→ 0
limit. We must look, instead, to gauge-invariant observables which are unaffected
by gauge transformations. These can be constructed by taking parallel transporters
around closed loops, known as Wilson loops.
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Elitzur’s theorem raises the question of whether the Higgs mechanism, which
gives masses to the fermions and gauge bosons of the standard model, may perhaps
not work. As demonstrated in [23] such fears are ungrounded, since the physical
phenomena which are associated with the Higgs mechanism can be recovered in an
approach that uses gauge-invariant fields only. The masses are extracted from expec-
tation values of gauge-invariant combinations of the Higgs and gauge fields, without
any need of introducing a non-zero expectation value of the Higgs field. In particular
the electroweak phase transition can be described in purely gauge-invariant terms.
For example, the expectation value of (φ,φ) exhibits a “jump” along the phase tran-
sition line in parameter space where the electroweak phase transition occurs.

13.5.1 Proof for Pure Z2 Gauge Theory

First we consider the simplest possible gauge theory, the pure lattice gauge theory
with gauge group Z2 and link variables U� ∈ {−1,1} on a finite lattice Λ. We couple
the system to an external field h and hence add a source term to the Wilson action,

Sgauge,Λ(U)=−β
∑

p

Up − h
∑

�

U�. (13.72)

In expectation values one sums over all elements of the configuration space Ω =
{U�|� ∈E}. Now we prove

Theorem 13.2 The magnetization 〈U�〉 converges to zero,

lim
h↓0

〈U�〉Λ(h)= 0, (13.73)

uniformly in Λ and β . This also holds in the thermodynamic limit.

Proof We bound the numerator and denominator in the expectation value

〈U�0〉Λ(h)=
∑

Ω U�0 exp(−Sgauge,Λ)∑
Ω exp(−Sgauge,Λ)

. (13.74)

Let x denote an end point of the link under consideration and perform a local gauge
transformation at x with Ωx =±1. Only variables defined on the 2d links ending at
this point are affected, U� →U ′

� =ΩxU� if x ∈ ∂�, and this is depicted in Fig. 13.8.
Both the original configuration {U�} and the transformed configuration {U ′

�} are
already contained in Ω such that the partition function in the denominator can be
written as

Z = 1

2

∑

Ωx=±1

∑

Ω

exp

(
βUp + h

∑

�:x /∈∂�
U�

)
exp

(
h

∑

�:x∈∂�
ΩxU�

)
,

where we took into account that the plaquette variables are gauge invariant. Thus
we obtain

Z =
∑

Ω

exp

(
βUp + h

∑

�:x /∈∂�
U�

)
cosh

(
h

∑

�:x∈∂�
U�

)
. (13.75)
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Fig. 13.8 Gauge transformation on the central site. All spins U� on the links touching the central
site (dotted lines in the figure) are flipped

Repeating the argument for the numerator N in (13.74) yields

N =
∑

Ω

exp

(
βUp + h

∑

�:x /∈∂�
U�

)
U�0 sinh

(
h

∑

�:x∈∂�
U�

)
. (13.76)

The argument of the hyperbolic functions varies between −2dh and 2dh such that
for all configurations

cosh (. . .)≥ e−2dh,
∣∣U�0 sinh(. . .)

∣∣≤ sinh(2dh). (13.77)

This yields the bound
∣∣〈U�0〉Λ(h)

∣∣≤ e2dh sinh(2dh)
h↓0−→ 0, (13.78)

uniformly in Λ and β . If one couples the Z2-gauge field minimally to a scalar field
and adds a symmetry breaking term h

∑
x φx then one can prove

〈φx〉(h) h↓0−→ 0, (13.79)

uniformly in Λ and the couplings β and κ , see problem 13.1. �

13.5.2 General Argument

Let Φ = {U�,φx, . . .} denote the collection of fields of a gauge theory and
∫

Dφ · · ·
the invariant integration. We study the expectation value of a local and non-invariant
function O(Φ) of the fields. Local means that it only depends on a finite number
of variables {Φ ′} defined on the sites and links in some finite area A. Non-invariant
means that O has no invariant component, i.e.

∫ ∏

x∈R

dΩxO
(Ω
Φ
)= 0, (13.80)

where ΩΦ denotes the gauge transformed configuration. Following [40] we decom-
pose the set of fields {Φ} into {Φ ′} ∪ {Φ ′′}. Now we average over the subgroup of
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gauge transformations which leave the {Φ ′′} invariant. The invariance of the action
without source term and of the integration implies

〈
O(Φ)

〉
λ,J

= 1

ZΛ,J

∫
DΦ

∏

x∈R

dΩx e−S[Φ]+(J,ΩΦ ′)+(J,Φ ′′) O
(Ω
Φ
)
. (13.81)

Since {Φ ′} contains a finite and Λ-independent number of degrees of freedom

| e(J,Φ ′) − 1| ≤ ε(J )
J↓0−→ 0,

and this bound is uniform in Λ and in Φ , at least if the latter is a compact variable.
Inserting

e(J,
ΩΦ ′) = 1+ (

e(J,
ΩΦ ′) − 1

)

into (13.81) the contribution of the first term vanishes because of (13.80). The con-
tribution of the second term vanishes in the limit limJ↓0 limΛ→Zd . This proves (to-
gether with a similar bound on the partition function) that

〈
O(Φ)

〉= lim
J↓0

lim
Λ→Zd

〈
O(Φ)

〉
Λ,J

= 0. (13.82)

The reasoning in the proofs hinges very much on the local gauge invariance and on
the positivity of the measure.

13.6 Observables in Pure Gauge Theories

For a gauge-invariant lattice action the normalized probability measure

dμ[U ] = 1

Z
e−Sgauge(U)

∏

�∈E
dU�, Z =

∫
e−Sgauge(U)

∏

�∈E
dU�, (13.83)

which defines the functional integral, is gauge invariant. The dimensionality of the
integral on a finite d-dimensional lattice is dV dim(G). For example for the pure
SU(2) gauge theory on a hyper-cubic 164-lattice one is confronted with a 786 432-
dimensional integral. According to Elitzur’s theorem it is only reasonable to con-
sider expectation values of gauge-invariant quantities. For a pure gauge theory the
gauge-invariant functions of the link variables are given by traces of parallel trans-
porters along closed paths (loops). Thus, we define

W [C ] = tr(U�n · · ·U�1), C = �n ◦ · · · ◦ �1. (13.84)

In most work W [C ] is called Wilson loop. Sometimes the product of the U ′s along
the loop, i.e. the argument of the trace in (13.84), is called a Wilson loop. It also
occurs that a Wilson loop is defined as the expectation value of W [C ]. With a Wilson
loop we will associate the gauge-invariant quantity W defined in (13.84).
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Fig. 13.9 Wilson loop
belonging to a rectangular
loop with edge lengths R
and T . From its expectation
value one may extract the
string tension between two
static charges

Fig. 13.10 Between a static quark–antiquark pair a flux tube develops and leads to a linearly rising
potential

13.6.1 String Tension

Let W [R,T ] denote the Wilson loop associated with a plane rectangular loop of
edge lengths R and T , respectively, as illustrated in Fig. 13.9. The function

Vqq̄(R)=− lim
T→∞

1

T
log

〈
W [R,T ]〉 (13.85)

is interpreted as potential energy of a static qq̄-pair separated by a distance R. From
the static potential we can extract the string tension

σ = lim
R→∞

Vqq̄(R)

R
. (13.86)

The justification of this interpretation will be given at a later stage.
A positive string tension means that the potential energy of the static charges in-

creases linearly with increasing distance R. The potential becomes infinitely large
for asymptotically separated charges and hence this state does not exist in a dynam-
ical theory. The formation of a flux tube of constant energy density between the
charges, as depicted in Fig. 13.10, could explain the linear rising potential: the en-
ergy of the tube is proportional to its length R and would give rise to a constant force
between the charges. On the other hand, a vanishing string tension would imply that
the force between the charges decreases with increasing separation. If it decreases
sufficiently fast then a finite amount of energy suffices to separate the two charges.
Color-electric flux tubes have indeed been observed in lattice simulations [42].

We assumed that the test particles are infinitely heavy charged objects without
their own dynamics. In the real world with dynamical matter the energy between
the departing charges increases only as long as the potential energy is smaller than
the energy necessary for pair production from vacuum. In the string picture the pair
production gives rise to string breaking. If pair production sets in then the created
pairs screen the test charges and finally we observe two neutral states departing
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from each other. Even without dynamical matter string breaking happens if the test
particles are in particular representations of the gauge group or if the gauge group
has a trivial center [41].

K. Wilson proposed the area or perimeter law for the expectation value of the
Wilson loop as a criterion for confinement in lattice gauge theories:

〈
W [R,T ]〉∼ e−T Vqq̄ (R) ∼ e−σ × area confinement,
〈
W [R,T ]〉∼ e−T Vqq̄ (R) ∼ e−γ × perimeter deconfinement.

(13.87)

For a plane rectangular loop the area and perimeter are T R and 2(T + R), respec-
tively. E. Seiler and C. Borgs proved that the static potential increases monotonously,
i.e. V ′

qq̄ ≥ 0. They also showed that this increase is at most linear, V ′′
qq̄ ≤ 0 [43, 44].

Hence, for large separation of the charges the static potential should have the form

Vqq̄(R)∼ σR+ const.− c

R
+ o

(
R−1), (13.88)

where c is a universal and positive constant. The term −c/R is the so-called Lüscher
term and originates from the quantum fluctuations of the flux tube connecting the
two static charges [45].

Let us finally motivate why Vqq̄ represents a static qq̄-potential. In quantum elec-
trodynamics the phase factor entering the functional integral in the presence of an
external four-current density is modified to

exp(iS)→ exp

(
iS + i

∫
d4x jμAμ

)
. (13.89)

We parametrize the world line C of an electrically charged point particle by zμ(τ)

with time-like four-velocity żμ. The four-current density is

jμ(x)= g

∫

C
dτ żμ(τ )δ4(x − z(τ )

)

and gives rise to the additional phase factor

exp

(
i
∫

d4xjμAμ

)
= exp

(
ig

∫

C
dzμAμ(z)

)
= exp

(
ig

∫

C
A

)
, (13.90)

where the integral is taken along the particle path C . We obtain the Euclidean ver-
sion by the substitutions dz0 →−i dz0 and A0 → iA0. The Wick rotation trans-
forms the phase (13.90) again into a phase. If we choose for C a loop representing
the world-lines of a heavy test particle and its antiparticle put into the system at a
given time and removed at a later time, then the partition function in presence of the
particles reads

1

Z

∫
DAμ exp

(−SE[A] + ig
∮

C
A
)=

〈
exp

(
ig

∮

C
A

)〉
= 〈

W [C ]〉. (13.91)

This is just the continuum result for the expectation value of the Wilson loop.
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13.6.2 Strong Coupling Expansion for Pure Gauge Theories

The Wilson action of a pure lattice gauge theory

Sgauge = β
∑

p

tr(1−�Up), β = 2

Ng2
, (13.92)

contains only the bare coupling constant g as free parameter. The theory may be
considered as classical spin system with inverse temperature 1/kT ∝ 1/g2. Thus
the perturbation theory in g2 corresponds to the low-temperature expansion in the
spin model and the strong coupling limit g� 1 corresponds to the high-temperature
limit of the spin model. We now argue that expectation values of Wilson loops,

〈
W [C ]〉=

∫ ∏
� dU�W [C ] e−Sgauge(U)

∫ ∏
� dU� e−Sgauge(U)

, (13.93)

obey an area law in the strong-coupling regime. To perform the strong-coupling
expansion, we expand the exponential of the lattice action in powers of β . Then the
problem is to calculate integrals over the group,

I
a1···am,c1···cn
b1···bm,d1···dn =

∫

G

dU U
a1
b1
· · ·Uam

bm
U

†c1
d1

· · ·U†cn
dn

, (13.94)

where the Haar measure is normalized to 1,
∫

dU = 1. For the cases (m,n)= (1,0)
and (1,1) the answers derive from the Peter–Weyl theorem (cf. Sect. 14.3.1)

∫

G

dU Ua
b = 0,

∫

G

dU Ua
b U

†c
d = 1

dim(U)
δad δ

c
b. (13.95)

The integral
∫

G

dUUa
b U

c
d (13.96)

is zero if the tensor product U⊗ Ū does not contain the trivial singlet representation.
It vanishes for the group SU(N) with N > 3. More generally, the center of these
groups is ZN and as a result the integral (13.94) is non-vanishing only if n=m+kN

with integer k. The integral (13.96) does not vanish for SU(2) and G2.
In the expectation value (13.93) the constant contribution β

∑
p tr1 to the Wilson

action cancels and hence will be dropped such that

e−Sgauge(U) =
∏

p

(
1+ β�Up +O

(
β2)).

Because of (13.95) the terms of order β do not contribute to the partition function,

Z = 1+O
(
β2)= 1+O

(
1/g4). (13.97)

The numerator in (13.93) has the strong coupling expansion
∫ ∏

�

dU�W [C ]
∏

p

(
1+ β�Up +O

(
β2)). (13.98)
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Fig. 13.11 Filling of a loop
C with plaquettes p1,p2, . . .

Consider a loop C = �n ◦ · · · ◦ �2 ◦ �1 as depicted in Fig. 13.11. Because of (13.95)
every link variable must appear at least twice in the integrand. Hence only those
products of plaquettes contribute that define a surface with boundary ∂C . Besides
a connected surface with boundary ∂C the plaquettes may define further surfaces
without boundaries. If the integral (13.96) vanishes then the plaquettes of the sur-
face with boundary ∂C must have opposite orientation to ∂C . Since every plaquette
contributes a factor β the surface with minimal area A gives the leading order con-
tribution. Hence, in leading order the expectation value (13.93) is given by

〈
W [C ]〉∼ (

c2β
)A = exp

(
−A log

Ng2

c2

)
. (13.99)

For a rectangular Wilson loop the minimal area is A=RT . The constant c originates
from the group integrations and depends on the gauge group.

Let us briefly comment on the sub-leading terms in the strong-coupling expan-
sion. Only products of plaquettes which define a surface with boundary C contribute
to the numerator in (13.93). The contributions of the additional closed surfaces that
are not connected to the surface enclosed by C cancel with the corresponding con-
tributions in the denominator. An area A may self-intersect or may be tangent to a
closed surface. In any case, we expect a series expansion of the form

〈
W [C]〉=

∑

A: ∂A=C

e−σA (13.100)

with string tension σ . Actually this area law should hold for all couplings and in
particular for weak couplings corresponding to small lattice sizes. Unfortunately,
up to now there exists no proof of this expectation.

13.6.3 Glueballs

Gluons, the “photons” of quantum chromodynamics, carry color charge and hence
interact strongly with each other. Thus we may expect bound states of several glu-
ons even in the absence of matter. These states, called glueball, are characterized
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by three quantum numbers JPC : the total angular momentum J and the discrete
quantum numbers P and C. The latter characterize the behavior under parity trans-
formation and charge conjugation. Gluons have spin 1 such that glueballs carry
an integer spin. We neglect the quark exchange between gluons and consider pure
gauge theories.

The energy of excited states are extracted from the exponential tails of suitable
two-point functions. Let G(τ) be the Euclidean two-point function of a gauge-
invariant operator Ô (an observable) given by the vacuum expectation value

GE(τ )= 〈0|T Ô(τ )Ô(0)|0〉 = 〈0|Ôe−τĤ Ô|0〉 =
∑

n

∣∣〈n|Ô|0〉∣∣2e−τEn, (13.101)

where the |n〉 form a complete set of eigenstates of the Hamiltonian Ĥ with ener-
gies En. For large Euclidean times the two-point function behaves as

GE(τ )→
∣∣〈0|Ô|0〉∣∣2 + ∣∣〈1|Ô|0〉∣∣2e−E1τ

(
1+O

(
e−τ(E2−E1)

))
. (13.102)

We see that the excited state with lowest energy and non-vanishing matrix element
〈1|Ô|0〉 determines the large time behavior. This matrix elements can only be non-
zero if the states Ô|0〉 and |1〉 have identical quantum numbers with respect to all
conserved charges. Thus, to calculate the mass of a glueball with specified quantum
numbers we must pick a suitable Ô which projects onto a subsector specified by the
quantum numbers JPC .

In a pure gauge theory every gauge-invariant operator is given in terms of Wilson
loops in the framework of the functional integral quantization. Hence we consider a
sum of Wilson loops

O =
∑

αiW [Ci] with
〈
O(τ )O(0)

〉=
∑

i,j

ᾱiαj
〈
W

[
C τ
i

]
W [Cj ]

〉
. (13.103)

Thereby C τ denotes the loop C shifted by τ lattice points in the Euclidean time
direction. To project onto states with zero momentum one often averages over the
spatial directions of the lattice. The eigenvalues of parity P and charge conjugation
C are ±1 and it is not difficult to implement the corresponding projections. It is
not so easy to project onto a subspace with fixed angular momentum since a lattice
theory is invariant only under a finite subgroup of the rotation group.

Cubic Group

The symmetry transformations of a lattice with fixed point form a finite subgroup of
the rotation group. In case of a hyper-cubic lattice it is the cubic group, i.e. one of the
platonic groups. There are three types of symmetry axis: the axes going through the
centers of opposite faces of the cube, the axes going through the centers of opposite
edges and the body diagonals as depicted in Fig. 13.12. Hence the order of the group
is 1+F/2× 3+E/2× 1+ V/2× 2 = 24, where F , E and V denote the numbers
of faces, edges and vertices of the cube. The group is isomorphic to the octahedral
group O24 or the permutation group S4 and contains five conjugacy classes:
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Fig. 13.12 The symmetry
operations of a hyper-cubic
lattice has three types of
symmetry axis: the six axes
going through the centers of
opposite faces, the six axes
going through the centers of
opposite edges and the four
body diagonals

Table 13.1 Character table
of the five irreducible
representations of the cubic
group

class # elements A1 A2 E T1 T2

e 1 1 1 2 3 3

C2 3 1 1 2 −1 −1

C3 8 1 1 −1 0 0

C ′
2 6 1 −1 0 1 −1

C4 6 1 −1 0 −1 1

1. the trivial class with neutral element e,
2. the class C2 with the π -rotations about the axes connecting opposite faces,
3. the class C3 with the 2π/3-rotations about the body diagonals,
4. the class C ′

2 with the π -rotations about the axes connecting opposite edges,
5. the class C4 of the ±π/2-rotations about the axes connecting opposite faces.

There are as many irreducible representations as there are conjugacy classes and
according to Burnside’s theorem the sum of squares of the dimensions of these rep-
resentations is equal to the order of the group. Hence, the cubic group has five irre-
ducible representations and the sum of the squares of their dimensions is 24. There is
the ubiquitous one-dimensional trivial representation A1, a second one-dimensional
representation A2, a two-dimensional representation E and two three-dimensional
representations T1 and T2. The latter consists of the symmetry transformations of
the cube. Table 13.1 contains the characters of the five irreducible representations
on the conjugacy classes e,C2,C3,C

′
2 and C4.

Projecting on Fixed Quantum Numbers

Now we are ready to construct an irreducible representation of parity, charge conju-
gation and the cubic group from a given Wilson loop W [C ]. Let Ca,P,g denote the
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loop resulting from C by a translation on the lattice with a ∈ Z3, a parity transfor-
mation P ∈ {1,−1} and a group transformation g ∈O24. Then we introduce

WθPC [C ] =
∑

a

∑

P,g

(−1)P χθ (g)
(
W [Ca,P,g] + (−)CW ∗[Ca,P,g]

)
, (13.104)

where θ denotes one of the five irreducible representations of the cubic group. This
combination of Wilson loops has quantum numbers θPC and a vanishing spatial
momentum. Simple loops may lead to a vanishing WθPC [C ] for some representa-
tions.

The infinitely many irreducible representations θ� of the rotation group are la-
beled by the angular momentum � = 0,1,2, . . . and have dimension 2� + 1. In
general, the irreducible representation θ� branches into several irreducible repre-
sentations of the subgroup O24. The branching rules are obtained by comparing the
characters of the rotation group with those of O24. In the rotation group the character
χ�(φ) of a rotation with fixed axis and angle φ in the representation θ� is

χ�(φ)= 1+ 2
�∑

k=1

cos(kφ). (13.105)

The symmetries of the cube are rotations through π,2π/3 and π/2 such that

χ�(e)= 2�+ 1,

χ�(C2)= (−1)�,

χ�(C3)= 1− (� mod 3), (13.106)

χ�
(
C ′

2

)= (−1)�,

χ�(C4)= 1+ (� mod 2)− (� mod 4).

Now we are ready to determine the coefficients α� in the branching rules

θ� =
∑

θ

α�(θ) θ and χ� =
∑

θ

α�(θ)χθ (13.107)

by using the orthonormality of the O24-characters:

α�(θ)= 1

24

∑

g∈O24

χθ (g)χ�(g).

The characters are constant on a conjugacy class such that (13.106) yields

24α�(A1)= 2�+ 15+ 9(−1)� + 6(� mod 2)− 8(� mod 3)− 6(� mod 4),

24α�(A2)= 2�+ 3− 3(−1)� − 6(� mod 2)− 8(� mod 3)+ 6(� mod 4),

24α�(E)= 4�− 6+ 6(−1)� + 8(� mod 3), (13.108)

24α�(T1)= 6�− 3+ 3(−1)� − 6(� mod 2)+ 6(� mod 4),

24α�(T2)= 6�+ 9− 9(−1)� + 6(� mod 2)− 6(� mod 4).

Inserting these results back into (13.107) yields the branching rules given in Ta-
ble 13.2, see also [46, 47]. As expected θ0 branches into A1 and θ1 branches into T2.
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Table 13.2 Angular
momenta for the irreducible
representations of the cubic
group

θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12 θ13 θ14 θ15

A1 1 0 0 0 1 0 1 0 1 1 1 0 2 1 1 1

A2 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 2

E 0 0 1 0 1 1 1 1 2 1 2 2 2 2 3 2

T1 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4

T2 0 1 0 1 1 2 1 2 2 3 2 3 3 4 3 4

Fig. 13.13 Examples of operators with fixed quantum numbers JPC

But already the five-dimensional representation θ2 branches into two representations
of the cubic group: θ2 = E ⊕ T1. In a lattice theory we can project onto one of the
five irreducible representations of the cubic group. In general the corresponding
subspace contains states with different angular momenta. For example, according
to Table 13.2 the angular momenta � = 0,4,6,8,9, . . . all contribute to the trivial
representation A1. This already illustrates the problem with filtering out representa-
tions with � > 3 on a cubic lattice. Figure 13.13 shows some simple combinations
of Wilson loops with fixed quantum numbers JPC .

To extract glueball masses with sufficient accuracy from simulations the over-
lap 〈1|Ô|0〉 should be as large as possible. We may increase the overlap by select-
ing a suitable linear combination of the operators with fixed quantum numbers in
(13.104),

WθPC =
∑

C

α(C )WθPC [C ] with
∑

C

∣∣α(C )
∣∣2 = 1. (13.109)

The optimal weights α(C ) used in this smearing procedure are extracted from
Monte Carlo simulations. The masses of the lowest lying glueballs, converted to
physical units and corresponding to a Sommer parameter r−1

0 = 410(20), are listed
in Table 13.3 and are taken from [48]. The reader interested in details concerning
the use of non-local smeared operators to improve the signal to noise ratio for small
lattice spacings may consult [49] and the textbooks cited at the end of this chapter.
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Table 13.3 Glueball masses for different quantum numbers JPC (taken from [48])

JPC 0++ 2++ 0−+ 1+− 2−+ 3+− 3++ 1−− 2−− 3−− 2+− 0+−

mG [MeV] 1710 2390 2560 2980 3940 3600 3670 3830 4010 4200 4230 4780

Fig. 13.14 A gauge theory at
finite temperature is
discretized on a cylinder with
circumferences βT = aN0.
Even in the thermodynamics
limit there exist parallel
transporters which wind
around the periodic time
direction—these are the
Polyakov loops

13.7 Gauge Theories at Finite Temperature

The partition function of a canonical ensemble at temperature T is given by

Z(βT )= tr e−βT H , βT = 1

kBT
. (13.110)

We set the Boltzmann constant kB = 1 and use the symbol βT for the inverse tem-
perature since β is reserved for the gauge coupling. In the path integral represen-
tation of the partition function and the thermal correlation functions one integrates
over fields which are periodic in the Euclidean time with period βT . An exhaustive
introduction to finite-temperature continuum gauge theories is contained in [50].

In the regularized lattice theory βT = aN0. In order not to mess up finite-
temperature and finite-volume effects we always assume N0 ) Ni , i = 1,2,3, or
equivalently that βT is much smaller than the spatial extent of the system. In the
continuum limit a → 0 the inverse temperature βT is kept fixed and this implies
N0,Ni → ∞. But when we perform the thermodynamic limit Ni →∞ at fixed
lattice spacing a then the number of lattice points in the time direction remains fi-
nite and the lattice forms a cylinder as depicted in Fig. 13.14. From the partition
function

Z(V,βT )=
∮ ∏

x

dφx
∏

�

dU� e−SYMH(U,φ), (13.111)

where one integrates over time-periodic fields,

Φx+N0e0 = φx, U〈x,y〉 =U〈x+N0e0,y+N0e0〉, (13.112)
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one extracts the free energy density f =−βT (logZ)/V . The first derivatives of this
density yield the inner energy density and pressure of the thermodynamic system,

ε = ∂f (V,βT )

∂βT

∣
∣∣∣
V

and p =−∂(Vf (V,βT ))

∂V

∣
∣∣∣
βT

. (13.113)

In the absence of a chemical potential, a change of the volume of a relativistic gas
alters its pressure by changing the particle numbers. The specific heat cV is given by
the derivative of ε with respect to temperature at constant volume. Using thermody-
namic identities, one can extract the speed of sound from ε and p. It is an important
problem to calculate the pressure and energy density with lattice simulations and to
extrapolate them to the continuum limit, see the nice review [51] for more details.
For sufficiently high temperatures a pure gauge theory should behave as a gas of free
gluons. This is actually not the case. For SU(3) one finds a deviation from the ideal
gas behavior of (15–20) % even at temperatures as high as T ≈ 3Tc, where Tc is the
critical temperature above which gluons, confined to glueballs at low temperatures,
become free and form a plasma [52].

We are not going further in this direction but instead discuss an interesting order
parameter. At finite temperature there are additional (nonlocal) observables, namely
the Polyakov loops winding around the periodic time direction [55, 56],

Px = trP(x), P(x)=
N0∏

t=1

U(t,x),0. (13.114)

We already encountered these loop variables when we discussed the axial gauge on
a periodic lattice, see (13.57). Polyakov loops are particular Wilson loops such that

e−βT �f (x−y) = 〈
P ∗

y Px
〉

(13.115)

defines the free energy �f which is needed to insert a static quark at x and a static
antiquark at y into the thermodynamic system. In the confining phase �f grows
without limits when we try to separate the pair whereas in the deconfined phase we
can separate the pair with a finite amount of energy �f . The cluster property

〈
P ∗

y Px
〉→ 〈

P ∗
y
〉〈Px〉 =

∣∣〈P 〉∣∣2 for |x− y| →∞
implies that

〈P 〉 =
{

0, confining phase,
P0 �= 0, deconfining phase.

(13.116)

The expectation value of the Polyakov loop distinguishes between the phase with
confined quarks and the phase with liberated quarks, similarly as the magnetization
distinguishes between the ordered and disordered phases of spin systems.

13.7.1 Center Symmetry

In pure gauge theories with non-trivial centers the Polyakov loop is an order param-
eter, similarly as the magnetization is an order parameter in the Ising model. The
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Fig. 13.15 Histograms of the
Polyakov loop for the SU(3)
gauge theory at the critical
temperature [53]. Below the
critical temperature the order
parameter is zero and above
the critical temperature it
takes one of the three center
values. The expectation
values jumps at the critical
temperature

center of a group is the maximal subgroup consisting of elements which commute
with all elements of the group. The center of SU(N) is the finite group

ZN = {
zn = zn1|z= e2π i/N ,n= 1,2, . . . ,N

}⊂ SU(N). (13.117)

If a gauge group contains a non-trivial center, then the corresponding gauge theory
is invariant under global center transformation. A center transformation multiplies
all time-oriented link variables in a fixed time slice with the same center element,

U(t,x),0 → znU(t,x),0, zn ∈ZN, t fixed. (13.118)

For example, we could multiply all fat links in Fig. 13.14 with the same center el-
ement. A center transformation is just a non-periodic gauge transformation which
maps periodic fields into periodic fields. It follows that the lattice action is invariant
since the traces of all parallel transporters around contactable loops (i.e. the plaque-
tte variables) are invariant under center transformations, see problem 13.3. But the
Polyakov loops are not invariant since just one link variable in (13.114) picks up a
center element such that

Px → znPx. (13.119)

Hence, if the expectation value of Px is non-zero, then the global center symmetry
is broken. This means that in the confining phase the center symmetry is realized
whereas in the deconfining phase it is spontaneously broken.

Figure 13.15 shows the histogram of the Polyakov loop in SU(3) gauge theory
just at the critical temperature. The order parameter jumps and this points to a first
order transition. The simulations reveal that the deconfinement transition in SU(N)

gauge theories without matter is first order for N ≥ 3. The transitions becomes
stronger with increasing N . The N -dependence of the critical temperature for 2 ≤
N ≤ 8 in units of the string tension is well fitted by Tc/

√
σ ≈ 0.596 + 0.453/N2,

see [54].



328 13 Lattice Gauge Theories

Fig. 13.16 Complete phase
diagram of the G2-Higgs
model with scalar field in the
fundamental representation in
the (β, κ)-plane on a 163 × 6
lattice [58]. The solid line
indicates a first order
transition, the dashed line a
second order transition and
the dotted line a second order
transition or a crossover. Note
that the scales are non-linear

13.7.2 G2 Gauge Theory

One may wonder whether a non-trivial center is essential for confinement since the
Polyakov loop ceases to be an order parameter if the center is trivial. An interesting
theory with trivial center is the Higgs model with exceptional gauge group G2. This
theory interpolates between pure G2 gauge theory for κ = 0 and pure SU(3) gauge
theory for κ →∞ [57]. The pure G2 gauge theory shows a first order confinement-
deconfinement transition. The Polyakov loop jumps at the critical temperature and is
very small but non-zero in the confining phase. Well below the critical temperature
it is difficult to measure its non-zero value in simulations. Hence, although P is
not an order parameter in the strict sense it is still a very useful quantity to spot
the phase transition. Figure 13.16 taken from [58] shows the full phase diagram
of the G2 Higgs model in the (β, κ) plane on a 163 × 6 lattice. The Higgs field
is in the seven-dimensional fundamental representation of G2 and for β =∞ the
model collapses to a O(7) non-linear sigma model. This model shows a second
order transition from a O(7)-symmetric to a O(7)-broken phase and this transition
persists for finite β . At the same time the first order confinement-deconfinement
transition at κ = 0 extends into the coupling constant plane until it meets the second
order line. The first order line beginning at κ =∞ almost meets the two other lines.
There remains a small window with a cross-over (or a weak transition) connecting
the confining and deconfining phases.

13.8 Problems

13.1 (Elitzur theorem for Z2 gauge theory with matter) Consider a Z2-gauge theory
coupled to a scalar field. The action with source term is

S =−β
∑

p

Up − κ
∑

〈x,y〉
φxU〈x,y〉φy + h

∑

x

φx +
∑

x

V (φx),
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where V is a Z2 symmetric potential. Prove that

lim
h↓0

〈φx〉 = 0

uniformly in Λ and the couplings.

13.2 (Metropolis simulation of the Z2 gauge model in three dimensions) Consider
a three-dimensional Z2 gauge theory with matter on a cubic lattice with N3 lattice
sites (a related analysis of the four-dimensional theory gives e.g. [39]). The action
is of the form

S =−β
∑

p

Up − κ
∑

〈x,y〉
sxUxysy,

where Uxy is Z2-valued. The free energy density f (β, κ)=−1/N3 logZ is propor-
tional to the logarithm of the partition function.

(a) Derive the relations

〈Up〉 = −1

3

∂

β
f (β, κ), and

〈
sxU〈x,y〉sy

〉=−1

3

∂

∂κ
f (β, κ). (13.120)

(b) Investigate the phase diagram in the (β, κ)-plane with the help of the Metropo-
lis algorithm by considering the expectation values (13.120). Before doing the
simulation you should study the limiting case β = 0.

13.3 (Center transformations) Show that the center transformations introduced in
Sect. 13.7 can be regarded as gauge transformations. Why do we admit these gauge
transformations although they are not periodic in time. Show that parallel trans-
porters around contractible loops are invariant under center transformations.

References

1. D. Ivanenko, G. Sardanashvily, The gauge treatment of gravity. Phys. Rep. 94, 1 (1983)
2. F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Metric affine gauge theory of gravity:

field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys.
Rep. 258, 1 (1995)

3. S. Pokorski, Gauge Field Theories (Cambridge University Press, Cambridge, 2000)
4. K. Huang, Quarks, Leptons and Gauge Fields (World Scientific, Singapore, 1992)
5. L. O’Raifeartaigh, Group Structure of Gauge Theories (Cambridge University Press, Cam-

bridge, 1986)
6. A. Das, Lectures on Quantum Field Theory (World Scientific, Singapore, 2008)
7. F.J. Wegner, Duality in generalized Ising models and phase transitions without local order

parameters. J. Math. Phys. 10, 2259 (1971)
8. K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445 (1974)
9. M. Creutz, L. Jacobs, C. Rebbi, Experiments with a gauge invariant Ising system. Phys. Rev.

Lett. 42, 1390 (1979)
10. M. Creutz, Confinement and the critical dimensionality of spacetime. Phys. Rev. Lett. 43, 553

(1979)



330 13 Lattice Gauge Theories

11. M. Creutz, Monte Carlo simulations in lattice gauge theories. Phys. Rep. 95, 201 (1983)
12. I. Montvay, G. Münster, Quantum Fields on a Lattice (Cambridge University Press, Cam-

bridge, 1994)
13. H.J. Rothe, Lattice Gauge Theories: An Introduction (World Scientific, Singapore, 2012)
14. T. DeGrand, C. DeTar, Lattice Methods for Quantum Chromodynamics (World Scientific, Sin-

gapore, 2006)
15. C. Gattringer, C. Lang, in Quantum Chromodynamics on the Lattice. Lect. Notes Phys.,

vol. 788, (2010)
16. L.P. Kadanoff, The application of renormalization group techniques to quarks and strings. Rev.

Mod. Phys. 49, 267 (1977)
17. J.B. Kogut, An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659

(1979)
18. J.B. Kogut, The lattice gauge theory approach to quantum chromodynamics. Rev. Mod. Phys.

55, 775 (1983)
19. P. de Forcrand, O. Jahn, Comparison of SO(3) and SU(2) lattice gauge theory. Nucl. Phys. B

651, 125 (2003)
20. R.L. Karp, F. Mansouri, J.S. Rho, Product integral formalism and non-Abelian Stokes theo-

rem. J. Math. Phys. 40, 6033 (1999)
21. R.L. Karp, F. Mansouri, J.S. Rho, Product integral representations of Wilson lines and Wilson

loops, and non-Abelian Stokes theorem. Turk. J. Phys. 24, 365 (2000)
22. R. Giles, Reconstruction of gauge potentials from Wilson loops. Phys. Rev. D 24, 2160 (1981)
23. J. Fröhlich, G. Morchio, F. Strocchi, Higgs phenomenon without symmetry breaking order

parameter. Nucl. Phys. B 190, 553 (1981)
24. F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie. Ber. Verh. Saechs.

Akad. Wiss. Leipz. 58, 19 (1906)
25. K. Wilson, in Recent Developments of Gauge Theories, ed. by G. ’t Hofft, et al. (Plenum, New

York, 1980)
26. K. Symanzik, Continuum limit and improved action in lattice theories. 1. Principles and φ4

theory. Nucl. Phys. B 226, 187 (1983)
27. M. Luscher, P. Weisz, Computation of the action for on-shell improved lattice gauge theories

at weak coupling. Phys. Lett. B 158, 250 (1985)
28. K. Langfeld, Improved actions and asymptotic scaling in lattice Yang–Mills theory. Phys. Rev.

D 76, 094502 (2007)
29. J.M. Drouffe, J.B. Zuber, Strong coupling and mean field methods in lattice gauge theories.

Phys. Rep. 102, 1 (1983)
30. G. Arnold, B. Bunk, T. Lippert, K. Schilling, Compact QED under scrutiny: its first order.

Nucl. Phys. B, Proc. Suppl. 119, 864 (2003)
31. K. Langfeld, B. Lucini, A. Rago, The density of states in gauge theories. Phys. Rev. Lett. 109,

111601 (2012)
32. J. Carlsson, B. McKellar, SU(N) glueblall masses in 2 + 1 dimensions. Phys. Rev. D 68,

074502 (2003)
33. S. Uhlmann, R. Meinel, A. Wipf, Ward identities for invariant group integrals. J. Phys. A 40,

4367 (2007)
34. K. Osterwalder, E. Seiler, Gauge field theories on a lattice. Ann. Phys. 10, 440 (1978)
35. E. Fradkin, S. Shenker, Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev.

D 19, 3682 (1979)
36. C. Bonati, G. Cossu, M. D’Elia, A. Di Giacomo, Phase diagram of the lattice SU(2) Higgs

model. Nucl. Phys. B 828, 390 (2010)
37. J. Greensite, An Introduction to the Confinement Problem. Lecture Notes in Physics (Springer,

Berlin, 2011)
38. S. Elitzur, Impossibility of spontaneously breaking local symmetries. Phys. Rev. D 12, 3978

(1975)
39. Y. Blum, P.K. Coyle, S. Elitzur, E. Rabinovici, S. Solomon, H. Rubinstein, Investigation of the

critical behavior of the critical point of the Z2 gauge lattice. Nucl. Phys. B 535, 731 (1998)



References 331

40. C. Itzikson, J.M. Drouffe, Statistical Field Theory, vol. I. Cambridge Monographs on Mathe-
matical Physics (Cambridge University Press, Cambridge, 1989)

41. B. Wellegehausen, A. Wipf, C. Wozar, Casimir scaling and string breaking in G2 gluodynam-
ics. Phys. Rev. D 83, 016001 (2011)

42. G.S. Bali, K. Schilling, C. Schlichter, Observing long color flux tubes in SU(2) lattice gauge
theory. Phys. Rev. D 51, 5165 (1995)

43. E. Seiler, Upper bound on the color-confining potential. Phys. Rev. D 18, 482 (1978)
44. C. Bachas, Convexity of the quarkonium potential. Phys. Rev. D 33, 2723 (1986)
45. M. Lüscher, K. Symanzik, P. Weisz, Anomalies of the free loop wave equation in WKB ap-

proximation. Nucl. Phys. B 173, 365 (1980)
46. M. Lax, Symmetry Principles in Solid State and Molecular Physics (Wiley, New York, 1974)
47. J.S. Lomount, Applications of Finite Groups (Academic Press, New York, 1959)
48. Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices. Phys. Rev. D

73, 014516 (2006)
49. M. Teper, An improved method for lattice glueball calculations. Phys. Lett. B 183, 345 (1986)
50. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cam-

bridge University Press, Cambridge, 2006)
51. F. Karsch, Lattice QCD at high temperature and density. Lect. Notes Phys. 583, 209 (2002)
52. G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lütgemeier, B. Petersson, Equa-

tion of state for the SU(3) gauge theory. Phys. Rev. Lett. 75, 4169 (1995)
53. B. Wellegehausen, Effektive Polyakov-Loop Modelle für SU(N)- und G2-Eichtheorien (Effec-

tive Polyakov loop models for SU(N) and G2 gauge theories). Diploma Thesis, Jena (2008)
54. B. Lucini, M. Teper, U. Wenger, The high temperature phase transition in SU(N) gauge theo-

ries. J. High Energy Phys. 0401, 061 (2004)
55. A.M. Polyakov, Quark confinement and topology of gauge groups. Nucl. Phys. B 120, 429

(1977)
56. B. Svetitsky, L.G. Yaffe, Critical behavior at finite temperature confinement transitions. Nucl.

Phys. B 210, 423 (1982)
57. K. Holland, P. Minkowski, M. Pepe, U.J. Wiese, Exceptional confinement in G(2) gauge the-

ory. Nucl. Phys. B 668, 207 (2003)
58. B. Wellegehausen, A. Wipf, C. Wozar, Phase diagram of the lattice G2 Higgs Model. Phys.

Rev. D 83, 114502 (2011)



Chapter 14
Two-Dimensional Lattice Gauge Theories
and Group Integrals

In two dimensions a pure lattice gauge theory with the simple Wilson action can
be solved analytically. With open boundary conditions and in the axial gauge the
partition function becomes a product of one-dimensional chains, each of which is
the same as a spin theory, and the area law behavior is exact for all values of the
gauge coupling β . In this chapter we impose periodic boundary conditions in all
directions, adequate for finite temperature and finite volume studies. On a torus the
solution is a bit less trivial, and the exact solution can be used as a test bed for new
Monte Carlo algorithms. First we study simple Abelian gauge models for which the
calculation parallels our treatment of one-dimensional spin models. The second part
deals with non-Abelian theories on the torus for which we use the character expan-
sion and a recursion formula due to Migdal [1, 2] (for a review see [3]). We cal-
culate the free energy and the potential energy between a static quark–antiquark
pair. Two dimensional gauge theories confine a static qq̄-pair, since in one space
dimension the field energy cannot spread out in space. For weak couplings the
string tension shows an exact Casimir scaling, similarly as gauge theories in three
and four dimensions. Towards the end of this chapter we collect some facts on
invariant group integration which are useful in strong-coupling expansions, mean
field approximations and exact solutions. Further material can be found in the text-
book [4].

14.1 Abelian Gauge Theories on the Torus

For an Abelian theory the calculation simplifies considerably if we choose an axial-
type gauge for the link variables in the partition function

ZV (β)= e−βV
∫ ∏

�

dU�

∏

p

eβ�(Up), Up =
∏

�∈∂p
U�. (14.1)

A. Wipf, Statistical Approach to Quantum Field Theory, Lecture Notes in Physics 864,
DOI 10.1007/978-3-642-33105-3_14, © Springer-Verlag Berlin Heidelberg 2013

333

http://dx.doi.org/10.1007/978-3-642-33105-3_14


334 14 Two-Dimensional Lattice Gauge Theories and Group Integrals

Fig. 14.1 If periodic
boundary conditions are
imposed then only the
variables on the marked links
can be gauged to the identity

On p. 307 we have argued that on a periodic lattice the variables on the marked links
in Fig. 14.1 can be transformed to the identity. As gauge-invariant variables we may
choose the plaquette variables and the Polyakov loops in both directions,

P0(t)=
N0∏

n=1

Ux+ne0,0, P1(x)=
N1∏

n=1

Ux+ne1,1. (14.2)

For periodic boundary conditions not all plaquette variables are independent since
U1U2 . . .UV = 1. Only V − 1 plaquette variables are independent and we choose
these as new variables, together with a subset of Polyakov loops. To find this sub-
set we observe that the Polyakov loop at x1 + m is equal to the Polyakov loop at
x1 multiplied by the plaquette variables enclosed by the two loops. Thus only one
Polyakov loop in the time direction is independent. The same applies to Polyakov
loops in the x1 direction. Thus there are V + 1 independent gauge-invariant vari-
ables. Together with the variables on the V − 1 marked links in Fig. 14.1, denoted
by E′, we obtain a complete set of 2V variables

{Up|p = 1, . . . , V − 1}, P0,P1 and
{
U�|� ∈E′}. (14.3)

Exploiting the invariance of the Haar measure we can write

ZV (β)= e−βV
∫ V−1∏

p=1

dUp

V∏

p=1

eβ�Up

∫
dP0 dP1

∫ ∏

�∈E′
dU�, (14.4)

wherein the plaquette variable UV is given in terms of the other plaquette variables.
The integrand does not depend on the link variables on E′ and on the Polyakov
loops and with 1 = ∫

dUV δ(1,U1U2 · · ·UV ) we obtain

ZV (β)= e−βV
V∏

p=1

∫
dUpeβ�Upδ

(
1,

∏
Up

)
. (14.5)

For an Abelian group every irreducible representation Rn is one-dimensional and the
formula (14.65) reads δ(1,U) =∑

n Rn(U). In addition Rn(UV ) = Rn(U)Rn(V )

such that the partition function for an Abelian gauge group factorizes

ZV (β)= e−βV
∑

n

(Zn)
V , Zn =

∫
dUeβ�URn(U), (14.6)
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where the sum extends over all irreducible representation of the group. Expectation
values of Wilson loops in a given representation Rn0 are calculated similarly. For
an Abelian theory Stokes theorem applies and the Wilson loop is the product of
plaquette variables

W [C ] =
∏

�∈C

Rn0(U�)=
∏

p∈A
Rn0(Up), (14.7)

where A is an area with boundary C . One obtains

〈
W [C ]〉=

∑
n Z

V−A
n ZA

n,n0∑
n Z

V
n

, Zn,n0 =
∫

dUeβ�URn(U)Rn0(U), (14.8)

such that the expectation value of the Wilson loop only depends on the charges of
the static qq̄ pair, the area of the loop and the lattice size. Later we shall see that this
formula implies confinement.

14.1.1 Z2 Gauge Theory

There are two irreducible representations of Z2 = {1,−1}. The trivial representation
assigns 1 to every group element such that Ztrivial = cosh(β) and for the defining
representation Zdefining = sinh(β). Thus (14.6) yields

ZV (β)=
(

1+ e−2β

2

)V

+
(

1− e−2β

2

)V

. (14.9)

In the thermodynamic limit V → ∞ we may neglect the last term and find the
ground state energy density

e(β)=− lim
V→∞

ZV (β)

V
=− log

1+ e−2β

2
. (14.10)

In the weak-coupling limit β →∞ it converges to the constant value log(2). By
contrast, in the strong-coupling limit the energy density converges to β = 1/g2. In
between it is a monotonically decreasing function of g as depicted in Fig. 14.2.

14.1.2 U(1) Gauge Theory

The continuous group U(1) has infinitely many one-dimensional irreducible repre-
sentation characterized by the integer charge,

Rn

(
eiα)= einα, n ∈ Z, (14.11)

such that Zn in (14.6) is given by a modified Bessel function of order n,

Zn(β)= 1

2π

∫ π

−π
eβ cosα+inα = In(β). (14.12)
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Fig. 14.2 Ground state
energy density for the
two-dimensional Z2-gauge
theory in the thermodynamic
limit V →∞ as function of
the coupling constant g. For
g > 0 it is an analytic
function of g

Fig. 14.3 Ground state
energy density of the
two-dimensional U(1) gauge
theory in the infinite volume
limit

Since I0(β) > I1(β) > · · · we obtain the following ground state energy density in
the thermodynamic limit:

e(β)= β − log I0(β). (14.13)

In the weak-coupling regime it diverges as − log(g) and for strong coupling it falls
off as 1/g2 −1/4g4 +· · · . Figure 14.3 shows the energy density as a function of the
coupling g. In passing we note that if one is only interested in the thermodynamic
limit then one may neglect the constraint U1 · · ·UV = 1 imposed by the periodic
boundary conditions. This already indicates that the thermodynamic limit V →∞
is insensitive to the boundary conditions. Actually this is true for two-dimensional
gauge theories with general boundary conditions, see [5].

Equation (14.11) shows that RnRn0 =Rn+n0 such that the formula for the Wilson
loop (14.8) yields the following simple result in the thermodynamic limit:

lim
V→∞

〈
W [C ]〉=

(
In0(β)

I0(β)

)A

. (14.14)

We see that in all representations the Wilson loops obey an area law. The string
tension in the charge n0 representation has the strong- and weak-coupling limits

σn0 = log
I0(β)

In0(β)
→

{
n0 log(2/β), for β ) 1,
log(1+ n2/2β), for β � 1.

(14.15)
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14.2 Non-Abelian Lattice Gauge Theories on the 2d Torus

For free boundary conditions it is easy to calculate the partition function and ground
state energy density. For example, for the gauge group SU(2) one finds

e(β)= 2β − log

(
I1(2β)

β

)
. (14.16)

The energy density shows a similar dependency on the gauge coupling as the energy
density of the U(1) theory. In the strong-coupling regime e ∼ 1/g2 − 1/8g4 + · · ·
and in the weak-coupling regime e∼ 3 log(g)+ 1

2 log(π/2).
For periodic boundary conditions in all directions the models can still be solved

but the solution involves several steps. Since there is no simple Stoke theorem for
non-Abelian theories the constraint on the plaquette variables is not as simple as for
Abelian theories. In place of Stokes’ theorem we shall apply the gluing rule (14.63).

Gluing Loops and Migdal’s Recursion Relation Let us consider two loops
Cx,C ′

x starting at x and sharing one edge as illustrated in Fig. 14.4. We denote
the variable on the common edge by V . The parallel transporter along Cx is given
by UCx

= WV and the transporter along C ′
x is V −1W ′. A class function obeys

f (ΩUΩ−1)= f (U) and is a linear combination of the orthonormal characters,

f (U)=
∑

R

cRχR(U), (14.17)

where the expansion coefficients are given by

cR = (χR,f )≡
∫

dUχ̄R(U)f (U). (14.18)

This expansion allows for the integration over the common link variable V in the
product function f (UCx

)f (UC ′
x
). By using the gluing rule (14.63), we find

∫
dVf (UC )f (UC ′)=

∑

R

c2
R

dR
χR

(
WW ′)=

∑

R

c2
R

dR
χR(UC ◦C ′). (14.19)

If the two loops share several edges and if these edges are connected, then only
one of the edges is glued. For example, if we glue together the loops Cx and C ′

x

along x, y in Fig. 14.5, the parallel transporter U〈x,z〉 in Cx and its inverse U〈z,x〉
in C ′

x cancel in the class function χR(UC ◦C ′). More generally, after gluing along
one common edge the link variables on the other common edges connected to the
glued edge cancel on the right hand side of (14.19). Hence UC ◦C ′ in this formula
describes the parallel transporter along the exterior boundary of the area enclosed
by C and C ′. However, if the two loops C and C ′ share several unconnected edges,
then only those variables cancel that are defined on common links connected to the
glued edge. Now we can iterate the gluing process, for example by gluing C ◦ C
and C ′′ at a common edge V ′,

∫
dV ′dVf (UC )f (UC ′)f (UC ′′)=

∑

R

c3
R

d2
R

χR(UC ◦C ′◦C ′′). (14.20)
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Fig. 14.4 Gluing a class
function on two loops which
share a common link V

Fig. 14.5 Gluing together
two loops at several
connected links

Every surface A without holes is built from single plaquettes by gluing one plaquette
after another along a connected set of edges, A= p1 ∪ · · · ∪pn. This way we obtain
for a surface without holes the Migdal recursion formula [1, 2]

∫ n−1∏

�=1

dV�
∏

f (Up1) · · ·f (Upn)=
∑

R

dR

(
cR

dR

)n

χR(U∂A). (14.21)

14.2.1 Partition Function

Now we are ready to calculate the partition function with the help of the recursion
formula applied to f (U)= exp(−β tr(1−�Up)). We assume A to be the union of
all plaquettes such that the boundary ∂A contains the link variables V,V ′ and W

depicted in Fig. 14.6. If we fix the link variables on the spatial boundary, then we
obtain the partition function

Z
(
V,V ′)=

∑
dR

(
cR

dR

)V ∫
dWχR

(
V −1W−1V ′W

)
.
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Fig. 14.6 Calculating the
partition function with the
help of the gluing and
separation rules

With the separation rule (14.64) the integral can be calculated,

Z
(
V,V ′)=

∑(
cR

dR

)V

χR
(
V −1)χR

(
V ′). (14.22)

If in addition we choose periodic boundary conditions in the spatial direction then
we must set V ′ = V and integrate over V ,

Zper = e−2βV
∑

R

(
cR(β)

dR

)V

, cR(β)=
∫

dUχ̄R(U)eβtr�U . (14.23)

The irreducible representations of SU(2) are characterized by their half-integer
spin j . The spin-j representation has dimension dj = 2j + 1 and its character is

χj (U)= sin(dj θ)

sin θ
. (14.24)

With tr�U = 2 cos θ the integral (14.23) yields a modified Bessel function:

cj (β)= 2

π

∫ π

0
dθ(sin θ)2

sin(dj θ)

sin θ
e2β cos θ =− 1

πβ

∫
sin(dj θ)

d

dθ
e2β cos θ

= dj

πβ

∫
cos(dj θ)e

2β cos θ = dj

β
I2j+1(2β).

Hence we end up with the following exact formula for the partition function of the
SU(2) gauge theory on the torus:

Z(β)= e−2βV
(

1

β

)V ∞∑

n=1,2,...

(
In(2β)

)V
. (14.25)

In the thermodynamic limit we recover the result (14.16) for the vacuum energy
density.

14.2.2 Casimir Scaling of Polyakov Loops

At finite temperature we must impose periodic boundary conditions in the Euclidean
time direction. In this section we compute the expectation value of correlators of the
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Fig. 14.7 Calculating the
expectation value of the
Polyakov loop with the
cutting rule

Polyakov loop Px for static charges in a fixed representation R0. The expectation
value of one Polyakov loop is given by

〈P 〉 = 1

Z

∫ ∏
dU�e

−Sgauge(U)χR0(Px). (14.26)

The straight Polyakov loop winding around the Euclidean time direction divides
the lattice into two regions, denoted by A and A′ in Fig. 14.7. We choose periodic
boundary conditions in the spatial direction. First we glue together the plaquettes in
each of the two regions. Decomposing the parallel transporters along ∂A and ∂A′
as depicted in the figure and using Migdal’s recursion relation we obtain for the
integral in (14.26) the double sum

∑

R,R′
dR

(
cR

dR

)A

χR
(
WV −1W−1P

)
dR′

(
c′R
d ′R

)A′

χR′
(
P−1W ′−1VW ′)χR0(P).

With the separation rule (14.64) the integration over W and W ′ can easily be done
and one obtains a double sum containing the factor χR(V −1)χR′(V ). Owing to the
orthogonality of the characters the integration over V reduces the double sum to a
single sum and we end up with

〈P 〉 = 1

Z
e−2βV

∑

R

(
cR

dR

)V ∫
dPχR0(P)χR(P)χR

(
P−1).

We now focus again on the gauge group SU(2) with characters χj . The Clebsch–
Gordon decomposition χj0χj = χj0+j + · · · + χ|j0−j | immediately yields

∫
dPχj0(P)χj (P)χj

(
P−1)=

{
0, for half-integer j0,
1, for integer j0 and j ≥ j0/2.

Thus we obtain the interesting result that for static quarks transforming according to
a half-integer spin representation the Polyakov loop expectation value vanishes. This
means that these particles are confined. Actually, a non-vanishing expectation value
would violate the center symmetry. On the other hand, for static quarks transforming
according to an integer spin representation of the gauge group we obtain

〈
χj0(P)

〉=
∑

n≥1 I
V
j0+n(2β)∑

n≥1 I
V
n (2β)

, j0 ∈ {0,1,2, . . .}. (14.27)
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Fig. 14.8 Calculation of the
two-point function of
Polyakov loops via the gluing
technique

The terms with n= 1 dominate for large volumes V such that we find the asymptotic
formula

〈
χj0(P)

〉≈
(
Ij0+1(2β)

I1(2β)

)V

, j0 ∈ {0,1,2, . . .}. (14.28)

Since the ratio is less than one the expectation value vanishes in the thermodynamic
limit.

In order to compute the two-point function of the Polyakov loop corresponding
to a static quark–antiquark pair in the representation R0,

〈
χ̄R0(Px)χR0(Py)

〉= 1

Z

∫ ∏
dU�e

−Sgauge(U)χ̄R0(Px)χR0(Py), (14.29)

we divide the lattice into three domains A,A′,A′′ as depicted in Fig. 14.8. Again we
impose periodic boundary conditions in all directions. First we glue the plaquettes
in each of the three domains and this yields a triple sum for the integral in (14.29).
Then we glue together the variables W,W ′ and W ′′ in every domain in Fig. 14.8.
After a further integration over V the triple sum collapses to the double sum

e−2βV
∑

R,R′

(
cR

dR

)A+A′(
cR′

dR′

)A′

χR(Px)χ̄R0(Px)χ̄R′(Px)χR′(Py)

× χR0(Py)χ̄R(Py).

The final integration over Py (or equivalently over Px ) counts how often R ap-
pears in the tensor product R0 ⊗ R′. After the integration over the Polyakov loops
the absolute squares of these generalized Clebsch–Gordon coefficients appear on
the right hand side. In particular, for the gauge group SU(2) and static quarks in
fundamental representation we find

〈trPx trPy〉 = e2βV

Z

(
1

β

)V ∑

n≥1

(
IA+A′′
n (2β)IA

′
n+1(2β)+ IA

′
n (2β)IA+A

′′
n+1 (2β)

)
,

(14.30)
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with partition function given in (14.25). In the thermodynamic limit both A and A′′
tend to infinity and only the term proportional to IA+A

′′
1 contributes. By using the

relation V =A+A′ +A′′ we end up with

〈trPx trPy〉 =
(
I2(2β)

I1(2β)

)A′

. (14.31)

We see that the two-point function obeys a Wilson’s area law. The free energy of the
two static charges grows linearly with their separation,

f
(|x− y|)= σ 1

2
|x− y| with σ 1

2
=− log

(
I2(2β)

I1(2β)

)
. (14.32)

Actually, one finds a similar behavior of static charges in higher representations of
SU(2). The free energy rises linearly with the separation and defines a string tension

σj =− log

(
I2j+1(2β)

I1(2β)

)
→

{
j (j + 1)/β, β →∞,

2j log(1/β), β → 0.
(14.33)

Interestingly in the weak-coupling limit β →∞ the string tension σj for static qq̄-
pair in the representation j is proportional to the eigenvalue j (j + 1) of the Casimir
operator. In two dimensions this Casimir scaling holds for higher groups as well. In
general the string tension is proportional to the quadratic Casimir.

In higher dimensions there is no proof of Casimir scaling, although there are good
reasons to believe that it holds. For example, for pure SU(2) and SU(3) gauge theo-
ries in three and four dimensions there is conclusive numerical evidence for Casimir
scaling from Monte Carlo simulations. In particular the simulations for SU(3) in
four dimensions confirm Casimir scaling within 5 % for separations up to 1 fm for
static quarks with Casimir values (normalized by the Casimir of {3}) up to 7 [6].
Dynamical quarks can screen the static charges in which case we expect Casimir
scaling only on intermediate scales. If the separation of the static qq̄ pair becomes
too large then string breaking sets in and the static potential flattens. String break-
ing has been seen in SU(2) gauge theory with fundamental fermions [7]. There are
gauge theories where the gauge bosons can screen the static quarks as well. In such
theories we expect string breaking even without matter. Indeed, for the exceptional
G2 gauge theory Casimir scaling holds only at intermediate distances. At large sep-
arations one observes string breaking [8].

Pure gauge theories in two dimensions are analytic for β > 0. They behave sim-
ilarly as one-dimensional spin chains and in particular there is no phase transition.
However, it was shown by Gross and Witten that, in two dimensions, the U(N) lat-
tice gauge theory with Wilson action exhibits a third order phase transition when
N approaches infinity [9]. The phase transition is due to the presence of an infinite
number of degrees of freedom in group space.

14.3 Invariant Measure and Irreducible Representations

Here we present some facts and formulas about invariant integration on group man-
ifolds which are useful when dealing with lattice gauge theories. On every compact
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group there exists a distinguished Haar measure which is positive, left-invariant and
right-invariant:

dU = d(ΩU)= d(UΩ), Ω ∈G. (14.34)

It was introduced by the Hungarian mathematician ALFRED HAAR back in 1933
and represents a generalization of the Lebesgue measure. When we normalize the
invariant measure, i.e.

∫
dU = 1, then it is unique. The conditions (14.34) are equiv-

alent to the left- and right-invariance of averages

M (f )≡
∫

G

dUf (U)=
∫

G

dUf (ΩU)=
∫

G

dUf (UΩ) (14.35)

for functions f :G→C. The map M is linear, positive, normalized and invariant.
For a finite group the average of a function is just its mean value,

M (f )= 1

|G|
∑

U∈G
f (U), (14.36)

and the properties (14.35) are evident. Another simple example is the Abelian Lie
group U(1) consisting of unimodular complex numbers parametrized by their phase
according to U = eiα , α ∈ [−π,π). A function f : U(1) → C is a 2π -periodic
function of the real phase α and its average is given by the integral

M (f )= 1

2π

∫ π

−π
dαf

(
eiα). (14.37)

For an Abelian group left- and right-multiplication are identical. The invariance of
the measure is easily proved,

1

2π

∫ π

−π
dα f

(
Ωeiα) Ω=eiβ= 1

2π

∫ π

−π
dα f

(
eiβ+iα)= 1

2π

∫ π

−π
dα f

(
eiα).

Haar Measure of SU(2) First we study the geometric meaning of left- and right-
translations on the group. To that aim we use the following bijective parametrization
of the group elements:

α→U(α)=
(

α1 + iα2 α3 + iα4
−α3 + iα4 α1 − iα2

)
with α =

⎛

⎜⎜
⎝

α1
α2
α3
α4

⎞

⎟⎟
⎠ ∈ S3. (14.38)

By definition a Lie group is a differentiable manifold and we see here explicitly that
the group SU(2) is identified with the sphere S3. A short calculation reveals that the
left-translation U →ΩU with Ω =U(β) is given by

U(β)U(α)=U
(
O(β)α

)
, O(β)α =

⎛

⎜⎜
⎝

β1 −β2 −β3 −β4
β2 β1 −β4 β3
β3 β4 β1 −β2
β4 −β3 β2 β1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

α1
α2
α3
α4

⎞

⎟⎟
⎠ .

(14.39)
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Since β has unit norm the four-dimensional matrix O(β) represents a rotation, i.e.
OTO = 1. Clearly the volume form on S3, inherited from the embedding space R4,
is rotationally invariant. A similar argument shows that the induced volume form is
also invariant under right-translations and this proves that

dU = δ
(
α2 − 1

)
dα1 dα2 dα3 dα4 (14.40)

is the unique Haar measure on the group SU(2). Alternatively one may introduce
“spherical coordinates” on the group manifold S3, given by

⎛

⎜⎜
⎝

α1
α2
α3
α4

⎞

⎟⎟
⎠=

⎛

⎜⎜
⎝

cos θ
sin θ cosψ

sin θ sinψ cosϕ
sin θ sinψ sinϕ

⎞

⎟⎟
⎠ , (14.41)

and this leads to the following parametrization of the group elements:

U(θ,ψ,ϕ)=
(

cos θ + i sin θ cosψ sin θ sinψeiϕ

− sin θ sinψe−iϕ cos θ − i sin θ cosψ

)
. (14.42)

The angles are restricted to the intervals

0 < θ < π, 0 <ψ < π and 0 < ϕ < 2π. (14.43)

For the spherical coordinates the Haar measure reads

dU = 1

2π2
(sin θ)2 sinψ dθ dψ dϕ. (14.44)

Haar Measure for a General Lie Group For other Lie groups the Haar measure
is constructed as follows: first one (locally) parametrizes the n-dimensional group
with n parameters {α1, . . . , αn} = α. Then dUU−1 is a linear combination of the
differentials dαa , where the coefficients belong to the Lie algebra g, and the line
element

ds2 =− tr
(
dU U−1dU U−1)= tr

(
∂U−1

∂αa

∂U

∂αb

)
dαa dαb = gab dαa dαb (14.45)

defines a left- and right-invariant metric on the group. Note that unitary groups have
anti-hermitian U−1dU such that the minus sign in (14.45) yields a metric with posi-
tive signature. Now the Haar measure is proportional to the volume form associated
with the invariant metric,

dU = const
√
g dα1 · · ·dαn, g = det(gab). (14.46)

The constant is fixed by the normalization of the measure. As an example consider
the parametrization (14.42) of SU(2). The invariant line element is

ds2 = dθ2 + sin2 θ dψ2 + sin2 θ sin2 ψ dφ2 (14.47)

and the corresponding normalized volume form is the Haar measure (14.44). One
may use the exponential map to parametrize the group: an element near the identity
may be written as the exponential of an element T of the Lie algebra,

U = eiT = ei(α1T1+···+αnTn) =U(α). (14.48)
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It is convenient to choose a trace-orthogonal basis of the Lie algebra,

trTaTb = κδab. (14.49)

The parameters {α1, . . . , αn} are continuous local coordinates of the Lie group. Now
we introduce the one-parametric group

U(t)= eitT with U(0)= 1, U(1)=U. (14.50)

The n elements of the Lie algebra may be written as

La(t)=−i ∂U(t)

∂αa
U−1(t).

They satisfy the simple differential equations

dLa(t)

dt
= Ta + i

[
T ,La(t)

]
. (14.51)

If we rewrite the La as linear combinations of the base elements Ta , i.e. La = Lb
aTb ,

then the coefficient matrix L= (Lb
a) fulfills the simple differential equation

L̇(t)= 1+L(t)X, X = (
Xb
a

)
, Xb

a = f b
acα

c. (14.52)

The structure constants f c
ab of the Lie algebra satisfy the relation

[Ta,Tb] = if c
abTc (14.53)

which means that they are real and antisymmetric in a and b (for compact groups).
Hence, the matrix X is antisymmetric as well. The solution to the differential equa-
tion (14.52) for the matrix function L(t) reads

L(t)=
∫ t

0
e(t−t ′)X = etX − 1

X
. (14.54)

We now may calculate the invariant metric tensor as introduced in (14.45) by virtue
of

gab = trLaLb|t=1 = κ
(
LLT

)
ab
|t=1, (14.55)

where κ emerges from the normalization of the base elements. This leads to the
invariant volume form (up to a multiplicative factor)

dV =√
g
∏

a

dαa ∝ (
detLLT

)1/2
t=1

∏

a

dαa (14.56)

which is proportional to the Haar measure. The matrix LLT appearing in (14.56)
has the form

LLT |t=0 =− 1

X2

(
eX − 1

)(
e−X − 1

)=−4X−2 sinh2(X/2)

=−
∏

n�=0

(
1+X2/(2πn)2

)
, (14.57)
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where we have used the Weierstrass product representation of the sinh function. For
example, the gauge group SU(2) with T = αaσa implies

X =
⎛

⎝
0 −α3 α2
α3 0 −α1
−α2 α1 0

⎞

⎠ and dV ∝ 8

|α|3 sin3
( |α|

2

)
d3α. (14.58)

14.3.1 The Peter–Weyl Theorem

The Haar measure is used to define an invariant scalar product for functions G→C,

(f, g)≡
∫

G

f̄ (U)g(U)dU. (14.59)

One obtains an orthonormal basis of the Hilbert space L2(G,dU) of square inte-
grable functions by considering all irreducible representations of the group G. We
recall that a representation R of G is a homomorphism from the group to the group
of invertible linear maps V → V . This means that a representation preserves the
structure of the group:

R :G→ L(V ), R(U1U2)=R(U1)R(U2), R(1)= 1. (14.60)

For a fixed basis in V we can identify a linear map with a matrix. Thus a represen-
tation assigns to each group element U an invertible matrix such that the conditions
(14.60) are satisfied. The dimension dR of a representation R is given by the di-
mension of the vector space V . For example, the infinitely many representations of
SU(2) are classified by the angular momentum j and the dimension of the represen-
tation is 2j + 1.

For a group with invariant measure every representation is equivalent to a unitary
representation, hence we may assume that the matrices R are unitary. A represen-
tation is called irreducible if the linear maps {R(U)|U ∈ G} have no common in-
variant subspace in V , apart from the empty set and V itself. Let {R(U)} denote the
set of all irreducible representations. Then we have the following important theorem
[10–13].

Theorem 14.1 (Peter–Weyl theorem) The functions {R(U)ab} define a complete or-
thogonal system of L2(dU) with

(
Ra
b ,R

′c
d

)≡
∫

R̄a
b (U)R′c

d (U)dU = δRR′

dR
δacδbd , (14.61)

where dR = trR(1) denotes the dimension of the representation R.

This theorem provides a generalization of the Fourier analysis of functions on
the unit circle to functions on groups. A useful consequence of this theorem is

Lemma 14.1 The characters χR(U) = trR(U) of the irreducible representations
form a orthogonal basis of the space of invariant functions f (U)= f (ΩUΩ−1) in
L2(dU). In particular, we have (χR,χR′)= δRR′ .
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This lemma can be used to decompose a reducible representation into its irre-
ducible parts. In the strong-coupling expansions and the exact solutions of two-
dimensional gauge theories we shall need further useful identities which are the
content of

Lemma 14.2 The following identities hold:

orthogonality: (
Ra
b ,χR′

)= δRR′

dR
δab , (14.62)

gluing:
∫

dΩχR
(
UΩ−1)χR′(ΩV )= δRR′

dR
χR(UV ),

(14.63)

separation:
∫

dΩχR
(
ΩUΩ−1V

)= 1

dR
χR(U)χR(V ), (14.64)

decomposition of 1:
∑

R

dRχR(U)= δ(1,U). (14.65)

For example, the gluing property is proven quite easily:
∫

dΩχR
(
UΩ−1)χR′(ΩV )=

∑

a,b,c,d

Ra
b (U)

∫
dΩR̄b

a(Ω)R′c
d (Ω)R′d

c (V )

=
∑

a,b,c,d

Ra
b (U)R′d

c (V )
δRR′

dR
δcaδ

b
d =

δR,R′

dR
χR(UV ).

The decomposition of the identity follows from the orthogonality relation (14.61).
Proofs and further relations are found in the rich literature on groups and represen-
tations, for example in [10–13].

14.4 Problems

14.1 (Solution of Z2 gauge theories in two dimensions) Calculate the partition func-
tion of the Z2 gauge theory

ZV (β)= 1

2|E|
∑

{U}
e−

∑
p β(1−Up) = 1

2|E|

(
coshβ

eβ

)V ∑

{U}

∏

p

(1+ tanhβUp)

without gauge fixing. Thereby Up denote a plaquette variable and the link variables
take the values U� ∈ {−1,1}. Expand the product and use

∑

U

Uk =
{

2, k odd,
0, k even.

The solution is very similar to that of the Ising spin chain.

14.2 (Peter–Weyl theorem and Fourier analysis) Apply the Peter–Weyl theorem to
the group U(1) and show that it reduces to a well-known property of the Fourier
series for periodic functions on an interval.
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Chapter 15
Fermions on a Lattice

In the previous chapters we considered quantum field theories for bosons with spin
0 and spin 1 and discussed the regularization of these theories on a spacetime
lattice. But all fundamental microscopic theories of nature contain both bosonic
and fermionic fields. Hence it remains to put fermions with spin 1/2 onto a lat-
tice. Electrons, muons or quarks are all described by a four-component spinor field
ψ(x) ∈C

4. The corresponding quantum field ψ̂(x) creates and annihilates the parti-
cles together with their anti-particles which have identical mass but opposite charge.
In this chapter we briefly recall the basic properties of a Dirac field in Euclidean
space. By using anticommuting Grassmann variables we formulate the path integral
for Fermi fields. With the most naive approach we encounter the species-doubling
phenomenon—the fact that a naively discretized Dirac field leads to more excita-
tions than expected. We discuss various proposals to discretize fermion fields, these
include Wilson fermions, staggered fermions and Ginsparg–Wilson fermions. To-
wards the end we shall comment on problems with formulating supersymmetric
systems on a lattice. A discussion of fermions on a lattice is contained in several
textbooks, see [1–8].

15.1 Dirac Equation

We assume that the reader has basic knowledge of the Dirac theory, and hence we
will not present many details regarding particular properties of the Dirac equation
and its solutions. In particular we only discuss the internal and spacetime symme-
tries in Euclidean space. We begin with the relativistic wave equation of a spinor
field ψ , the Dirac equation, in Minkowski spacetime,

(i/∂ −m)ψ(x)= 0, /∂ = γ μ∂μ,
{
γ μ, γ ν

}= 2ημν1, (15.1)

where (ημν) denotes the metric tensor diag(1,−1,−1,−1) and γ 0, . . . , γ 3 are the
four-dimensional gamma matrices that satisfy the relation in (15.1). In the following
we shall consider Euclidean Fermi fields. The gamma matrices in Euclidean space

A. Wipf, Statistical Approach to Quantum Field Theory, Lecture Notes in Physics 864,
DOI 10.1007/978-3-642-33105-3_15, © Springer-Verlag Berlin Heidelberg 2013
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γ
μ
E are related to those in Minkowski spacetime according to γ 0

E = γ 0 and γ i
E = iγ i .

They satisfy anticommutation rules with the Euclidean metric,
{
γ
μ
E , γ ν

E

}= 2δμν1. (15.2)

Since we are dealing with the Euclidean theory we omit the index E in what follows.
The Euclidean gamma matrices are hermitian

γ †
μ = γμ = γ μ (15.3)

and the Euclidean Dirac equation reads

Dψ(x)≡ (/∂ +m)ψ(x)= 0, (15.4)

with an anti-hermitian operator /∂ . Lorentz transformations in Minkowski space turn
into rotations in four-dimensional Euclidean space and a spinor field transforms
under these rotations according to ψ(x′)= Sψ(x) with S†S = 1.1 Here S is a spin
transformation from the covering group of the rotation group SO(4). The bilinear
ψ̄ψ is not invariant under “Lorentz transformations” in Euclidean space if we stick
to the definition ψ̄ = ψ†γ 0, valid in Minkowski spacetime. In Euclidean space ψ̄

should be considered as ψ† when it comes to spin transformations. The hermitian
matrix

γ5 = γ 0γ 1γ 2γ 3 = γ
†
5 (15.5)

anticommutes with all gamma matrices:
{
γ5, γ

μ
}= 0 and γ 2

5 = 1, (15.6)

and has the degenerate eigenvalues ±1. The Dirac operator D fulfills the relation

γ5Dγ5 =D† (15.7)

which implies that all non-real eigenvalues appear in complex-conjugate pairs and
that the determinant of D is real. This non-Hermitian Dirac operator is also obtained
by a careful derivation of the path-integral representation of the partition function.
The Dirac equation (15.4) is the Euler–Lagrange equation derived from the action

SF =
∫

d4x

(
1

2

(
ψ̄(x)γ μ∂μψ(x)− ∂μψ̄(x)γ

μψ(x)
)+mψ̄(x)ψ(x)

)
. (15.8)

Up to a surface term the action can be written as

SF =
∫

d4x ψ̄(x)Dψ(x), (15.9)

and the latter form is most commonly used in the literature.

1Recall that in Minkowski space S† = γ 0S−1γ 0.
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15.1.1 Coupling to Gauge Fields

Realistic theories contain several Dirac fields and these fields combine to a field
ψ with values in V ⊗ C

4. Here V is a vector space equipped with a G-invariant
scalar product, i.e. (χ,ψ) = (Ωχ,Ωψ) for all Ω ∈G. Expanding χ and ψ in an
orthonormal basis of V the scalar product reads (χ,ψ) = ∑

a χ̄aψa , where each
term is the Lorentz-invariant bilinear of the corresponding Dirac spinors. The linear
transformation Ω only acts on the internal index a (and not on the spinor index)
such that the Lagrangian density is invariant under global transformations,

L = (ψ,Dψ)= (
ψ ′,Dψ ′), ψ ′ =Ωψ, Ω ∈G. (15.10)

Similarly as for a scalar field we can promote the global symmetry to a local one
by introducing a Lie-algebra valued gauge potential to define a covariant derivative.
The resulting covariant Dirac operator reads

D = /D+m, /D = γ μDμ, Dμ = ∂μ − igAμ, (15.11)

and the Lagrangian (15.9) with this operator is invariant under local gauge transfor-
mations (ψ,Aμ)→ (ψ ′,A′

μ). If there is only one Dirac field the gauge transforma-
tions are local U(1) transformations,

ψ ′(x)= eigλ(x)ψ(x), ψ̄ ′(x)= ψ̄(x)e−igλ(x), A′
μ(x)=Aμ(x)+ ∂μλ(x).

(15.12)

In the chiral limit m = 0 the Lagrangian (15.9) for one Dirac field in addition is
invariant under global chiral transformations,

ψ(x)→ eγ5αψ(x), ψ̄(x)→ ψ̄(x)eαγ5 , α ∈R. (15.13)

In Euclidean space the chiral transformations form the non-compact group R+,
whereas in Minkowski spacetime they form the compact group U(1). The chiral
symmetry group is enlarged for a multiplet of Dirac fields.

15.2 Grassmann Variables

To motivate why we need anticommuting variables in the path-integral quantization
of theories with fermions we briefly return to bosonic fields. A scalar field entering
the path integral is a real and commuting function,

[
φ(x),φ(y)

]= 0. (15.14)

This property may be regarded as the limiting case �→ 0 of the commutation rules
for the quantum field φ̂. A fermionic quantum field, on the other hand, must satisfy
the equal-time anticommutation relations

{
ψ̂(t,x), ψ̂(t,y)

}= 0, x �= y,
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so that the Pauli exclusion principle and Fermi–Dirac statistics are fulfilled. This
serves as motivation for using an anticommuting field:

{
ψ(x),ψ(y)

}= 0, ∀x, y, (15.15)

in the fermionic path integral. We may view an anticommuting field as classical
limit of a fermionic quantum field. Classical bosonic fields are built with commut-
ing c-numbers whereas ’classical fermionic fields’ are built with anticommuting
Grassmann variables. We refer the reader interested in details to the literature [5, 9].
The objects {ηi, η̄i} form a complex Grassmann algebra if

{ηi, ηj } = {η̄i , η̄j } = {ηi, η̄j } = 0, i, j = 1,2, . . . , n, (15.16)

holds. Note that the square of a Grassmann variable is zero. For the path integral we
need to integrate over functions of Grassmann variables. The integration is a linear
map and defined by the rules

∫
dηi(a + bηi)= b,

∫
dη̄i (a + bη̄i)= b (15.17)

with arbitrary complex numbers a, b. The integration is invariant under a translation
of the Grassmann variables.

15.2.1 Gaussian Integrals

Most path integrals for fermionic systems lead to Gaussian integrals of the form

Z =
∫

D η̄Dηe−η̄Aη, η̄Aη=
∑

ij

η̄iAij ηj , (15.18)

where the integration extends over all Grassmann variables

D η̄Dη=
∏

dη̄i dηi. (15.19)

The Gaussian integral can be evaluated by an expansion of the exponential function.
Due to the integration rules (15.17) the only non-vanishing contribution is given by

(−1)n

n!
∫

D η̄Dη(η̄Aη)n = (−1)n
∫

D η̄Dη
∑

i1,...,in

(η̄1A1i1ηi1) · · · (η̄nAninηin)

= (−1)n
∫

D η̄Dη
∏

i

(η̄iηi)
∑

i1,...,in

εi1...inA1i1 · · ·Anin

=
∫ ∏

i

(dη̄i η̄i dηi ηi)detA= detA.

Thus we end up with the simple formula

Z =
∫

D η̄Dηe−η̄Aη = detA. (15.20)
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Next we consider the slightly more general Gaussian integral

Z(ᾱ,α)=
∫

D η̄Dηe−η̄Aη+ᾱη+η̄α (15.21)

with Grassmann-valued sources α = (α1, . . . , αn) and ᾱ = (ᾱ1, . . . , ᾱn). We used
the abbreviation η̄α =∑

η̄iαi . Shifting the integration variables η̄i , ηi according to

η→ η+A−1α and η̄→ η̄+ ᾱA−1

and using the translational invariance of the integration, we obtain the following
generalization of (15.20):

Z(ᾱ,α)=
∫

D η̄Dηe−η̄Aη+ᾱη+η̄α = e−ᾱA−1α detA. (15.22)

Expanding both sides in powers of ᾱ, α, we find the useful formula

〈η̄iηj 〉 ≡ 1

Z

∫
D η̄Dηe−η̄Aηη̄iηj =

(
A−1)

ij
. (15.23)

The integral is zero when the number of variables η̄ and η do not match,

〈η̄i1 · · · η̄inηj1 · · ·ηjm〉 = 0 if m �= n. (15.24)

In passing we note that path integrals for Majorana fermions lead to Gaussian inte-
grals of the from

∫
Dηe

1
2 η

tMη = Pf(M), Dη=
∏

dηa, (15.25)

where η= (η1, . . . , η2N) denotes an even number of real Grassmann variables with
anticommutation rules

{ηa, ηb} = 0, (15.26)

and M is a real and antisymmetric matrix. Up to a sign the Pfaffian Pf(M) is the
square root of det(M). Further properties of Grassmann integrals for real anticom-
muting parameters are found on p. 379.

15.2.2 Path Integral for Dirac Theory

After these algebraic preliminaries we return to quantum field theory. An anti-
commuting field assigns several Grassmann variables to each spacetime point.
For a Dirac field in four dimensions these are the anticommuting variables
{ψα(x), ψ̄α(x)}, where the spinor index α takes the values 1,2,3,4. The ‘classi-
cal’ Dirac field satisfies

{
ψα(x),ψβ(y)

}= {
ψ̄α(x), ψ̄β(y)

}= {
ψα(x), ψ̄β(y)

}= 0. (15.27)

The functional integration over the fermion field is the (formal) Grassmann integral
∫

DψDψ̄ . . .≡
∫ ∏

x

∏

α

dψα(x)dψ̄α(x) . . . , (15.28)
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and the expectation value of an observable Â is given by the functional integral

〈0|Â|0〉 = 1

ZF

∫
DψDψ̄A(ψ̄,ψ)e−SF(ψ,ψ̄) (15.29)

normalized by the partition function

ZF =
∫

DψDψ̄e−SF . (15.30)

The integrands contain the classical action SF for the fermion field. Most physically
relevant theories have a bilinear action

SF =
∫

ddxL (ψ, ψ̄), L = ψ̄(x)Dψ(x), (15.31)

which contains the Dirac operator D. Exceptions are the Thirring, Gross–Neveu and
supergravity models which contain terms that are quartic in the Fermi fields.

Applying (15.20) we can calculate the partition function of a theory with bilinear
action (15.31). Formally it is just the determinant of the Dirac operator,

ZF =
∫

DψDψ̄ exp

(
−

∫
ddxψ̄(x)Dψ(x)

)
= detD. (15.32)

The corresponding formula for a complex scalar fields reads

ZB =
∫

DφD φ̄ exp

(
−

∫
ddx φ̄(x)Aφ(x)

)
= 1

detA
. (15.33)

There are interesting field theories with an additional supersymmetry for which the
contributions of the bosons and fermions to the partition function chancel. For these
theories the bosonic operator A and the fermionic operator D are related. In a lat-
tice regularization the Dirac operator becomes a huge matrix, and one of the main
difficulties in MC simulations is to calculate the determinant and the inverse of this
matrix.

15.3 Fermion Fields on a Lattice

To obtain a lattice regularization for fermionic systems we proceed similarly as for
scalar field theories by substituting differentials by differences. In contrast to the
bosonic fields the most naive discretization is afflicted with the doubling problem
and we shall discuss how to deal with this problem. In many cases the lengths and
dimensionful parameters are measured in units defined by the lattice spacing a.
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15.3.1 Lattice Derivative

The discretization of differential operators within fermionic systems is a subtle point
since the field equations contain the first-order Dirac operator D. According to
(15.23) the two-point function (before averaging over the other fields) reads

GF(x, y)=
〈
ψ(x)ψ̄(y)

〉≡GF(x − y)= 〈x| 1

D
|y〉 (15.34)

and the inverse of the Dirac operator depends on the discretization. We assume that
the lattice Dirac operator is γ5-symmetric

γ5Dγ5 =D†, (15.35)

such that its eigenvalues come in complex conjugated pairs {λ,λ∗} and its determi-
nant is real. To prove this proposition we consider the characteristic polynomial of
the operator on a finite lattice,

P(λ)≡ det(λ−D)= detγ5(λ−D)γ5 = det
(
λ−D†)= P ∗(λ∗

)
. (15.36)

This means that if λ is a root of the characteristic polynomial then λ∗ is also a root
and this proves the proposition. A Dirac operator D = /∂ +m+O is γ5-hermitian if
the lattice derivatives are anti-hermitian and the operator O is hermitian with respect
to the �2-scalar product on the space of lattice functions and also commutes with γ5,

γ5Dγ5 = γ5(/∂ +m+O)γ5 =−/∂ +m+O = /∂†
μ +m+O† =D†, (15.37)

where we used that the γ μ anticommute with γ5.

Forward and Backward Derivative

The frequently used nearest-neighbor forward and backward derivatives

(∂̂μf )(x)= f (x + eμ)− f (x),
(
∂̂ ′μf

)
(x)= f (x)− f (x − eμ) (15.38)

are not anti-hermitian with respect to the scalar product (f, g)=∑
x f̄ (x)g(x). In

fact for periodic boundary conditions we have ∂̂†
μ = −∂̂ ′μ. Both derivatives define

circulant matrices and thus commute with each other,

[∂̂μ, ∂̂ν] =
[
∂̂ ′μ, ∂̂ ′ν

]= [
∂̂μ, ∂̂

′
ν

]= 0. (15.39)

Plane waves on the periodic lattice

ϕp = 1√
V

eipx, pμ = 2π

N
nμ, nμ ∈ ZN (15.40)

are simultaneous eigenfunctions of the derivative operators,

∂̂μϕp = ip̂μeipμ/2ϕp, ∂̂ ′μϕp = ip̂μe−ipμ/2ϕp, p̂μ = 2 sin
pμ

2
. (15.41)
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Fig. 15.1 The fermionic Green function for the forward derivative on the one-dimensional lattice
with N = 20 lattice sites as well as its interpolating exponential function

In particular the inverse of ∂̂ +m on a one-dimensional lattice reads

〈x| 1

∂̂ +m
|y〉 = 1

N

∑

p

eip(x−y)

m+ ieip/2p̂

N→∞→ 1

2π

π∫

−π
dp

eip(x−y)

m+ ieip/2p̂
. (15.42)

This Green function is very well approximated by an exponential fit for small bare
masses m < 0.2 or equivalently for large correlation lengths ξ > 5. Figure 15.1
shows both the propagator and its exponential fit for the masses m = 0.1 and
m= 0.2.

Antisymmetric Derivative

In place of the forward and backward derivatives one may employ the antisymmetric
discretization of ∂μ, defined by

∂̊μ = 1

2

(
∂̂μ + ∂̂ ′μ

) �⇒ (∂̊μf )(x)= 1

2

(
f (x + eμ)− f (x − eμ)

)
. (15.43)

These commuting derivatives can be diagonalized simultaneously. The plane waves
(15.40) are the eigenfunctions with eigenvalues

∂̊μϕp(x)= ip̊μϕp(x), p̊μ = sinpμ, (15.44)

and we find the following Green function on the one-dimensional lattice:

〈x| 1

∂̊ +m
|0〉 = 1

N

∑

p

eipx

m+ ip̊
N→∞→ 1

2π

π∫

−π
dp

eipx

m+ ip̊
. (15.45)

Figure 15.2 shows the Green function on the lattice with 40 sites. Note that the re-
striction of the propagator to even (odd) lattice sites defines an even (odd) lattice
function. The functions on the two sub-lattices approach each other for small x,
whereas they have opposite signs near x = N . This means that the lattice Green
function with antisymmetric derivative oscillates with a large amplitude around
the mean value 0 for x → N . The figure also shows that the exponential function
exp(−mx) fits the Green function rather well for x)N and 5 ) ξ )N/2.
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Fig. 15.2 The fermion Green function for the antisymmetric derivative on a one-dimensional lat-
tice with N = 40

SLAC Derivative

Here we introduce yet another lattice derivative—the SLAC derivative [13, 14]—
which can be used in fermionic systems without local gauge invariance.2 This
derivative yields the best values for the bound state energies of quantum mechanical
Hamiltonians discretized on lattices of moderate sizes [15, 16]. In addition, simu-
lations of supersymmetric Yukawa models show that in these models observables
approach their continuum values most rapidly when one employs the SLAC deriva-
tive [17, 18]. This lattice derivative has the interesting property of having exactly
the same spectrum as the continuum derivative below the UV-cutoff. A particular
simple choice of the SLAC derivative has the following matrix elements in position
space:

(∂slac)kk = 0, (∂slac)k �=k′ = π

N
(−)k−k′ 1

sin(πtkk′)
, tkk′ = k− k′

N
. (15.46)

Clearly, the SLAC derivative is antisymmetric. Further properties of this derivative
are discussed in the Appendix to this chapter. Figure 15.3 shows the Green functions
of the Dirac and Klein–Gordon operators

GF(x)= 〈x| 1

m+ ∂slac
|0〉 and GB(x)= 〈x| 1

m2 − ∂2
slac

|0〉 (15.47)

on a one-dimensional lattice. Near the origin the amplitude of the fermionic Green
function overshoots since in momentum space the SLAC derivative jumps at the
edge of the Brillouin zone. The overshooting is the well-known Gibbs phenomenon
of Fourier transforms of discontinuous functions. The fits in Fig. 15.3 are normal-

2The problems with the SLAC derivative in gauge theories as discussed in [19] are absent in theo-
ries without local gauge invariance [17].
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Fig. 15.3 The fermion and boson Green function on a chain with N = 41 sites, evaluated with the
non-local SLAC derivative

ized such that they match the propagator at x = 2 and x = 3, respectively. The
interpolating function

GB(x)∼ const
(
e−mx + e−m(N−x))

approximates the bosonic Green function very well.

15.3.2 Naive Fermions on the Lattice

In this section we shall discuss various types of lattice fermions distinguished by
the different discretization of the Dirac operator. Since the main focus is on the
discretizations of /∂ it is sufficient to consider free fermions. We do not specify the
dimension of the Euclidean lattice. In d dimensions a Dirac spinor has Δf = 2[d/2]
complex components, where [d/2] is the largest integer which is smaller or equal
to d/2. For even d there exists a generalization of γ5 which anticommutes with
all γ μ. If we use the forward (or backward) derivative ∂̂μ in the discretization of the
continuum action (15.9) in the absence of gauge fields we obtain

Snaive =
∑

x

ψ̄xD̂ψx, D̂ = γ μ∂̂μ +m. (15.48)

But in even dimensions the operator D̂ does not possess the γ5-symmetry (15.7),

γ5D̂γ5 =−/̂∂ +m �=D†,

since the hermite conjugate of a forward derivative is the backward derivative. In
addition, this implementation violates the cubic symmetry on a hypercubic lattice
which is useful to recover the rotational O(4) symmetry on large scales or in the
continuum limit. Besides, the reflection hermiticity (the Euclidean counterpart of
the hermiticity in Minkowski spacetime) is violated and the theory in Minkowski
spacetime lacks unitarity.

One may believe that the antisymmetric lattice derivative ∂̊μ in (15.43) leads
to an acceptable lattice Dirac operator since it is γ5-Hermitian. But this operator
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suffers from the species-doubling problem. To see this more clearly we calculate the
eigenvalues, eigenfunctions and Green function

GF(x, y)= 〈ψxψ̄y〉 = 〈x| 1

D̊
|y〉, D̊ = γ μ∂̊μ +m (15.49)

with antisymmetric derivatives. First we observe that the lattice Laplacian Δ̊ in

D̊D̊† = (
γ μ∂̊μ +m

)(−γ μ∂̊μ +m
)= (−Δ̊+m2)1 (15.50)

only connects next-to-nearest neighbors on the lattice,

(Δ̊f )(x)= 1

4

∑

μ

(
f (x + 2eμ)− 2f (x)+ f (x − 2eμ)

)
. (15.51)

The plane waves (15.40) are eigenvectors of Δ̊ with eigenvalues

p̊2, p̊μ = sin(pμ) (15.52)

and this spectrum causes the doubling problem. This becomes clear when we com-
pare (15.51) with the standard lattice Laplacian

(Δ̂f )(x)= (
∂̂ ′μ∂̂μf

)
(x)=

∑

μ

(
f (x + eμ)− 2f (x)+ f (x − eμ)

)
, (15.53)

which connects nearest neighbors on the lattice and has the eigenvalues

p̂2, p̂μ = 2 sin

(
pμ

2

)
. (15.54)

Figure 15.4 shows the dispersion relations (15.52) and (15.54) together with the
dispersion relation p→ p2 of the continuum operator on the interval of “length” N .
We see that for small pμ the three dispersion relations are identical and in particular
that the constant function with zero momentum is an eigenfunction with eigenvalue
zero (a zero-mode) of all three operators. But for even N the operator Δ̊ has not
only one but 2d zero-modes3 with momenta in the first Brillouin zone,

p = (p0, . . . , pd−1) and pμ ∈ {0,π}. (15.55)

The Green function GF of the naive lattice Dirac operator is

GF(x, y)= 1

V

∑

p

GF(p)e
ip(x−y), GF(p)= 1

iγ μp̊μ +m
. (15.56)

In the thermodynamic limit the sum over the discrete momenta in (15.56) turns into
a Riemann integral over the Brillouin zone,

GF(x, y)
N→∞→ 1

(2π)d

∫

B

d4pGF(p). (15.57)

3Strictly speaking there is only one zero-mode for odd N . But in the thermodynamic limit the
momenta on the edge of the Brillouin zone again give rise to zero-modes.
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Fig. 15.4 The spectra of two
discretizations Δ̊ and Δ̂ of
the Laplace operator on a
one-dimensional lattice. For a
comparison we also plotted
the dispersion relation of the
continuum operator on the
finite interval

For small momenta the propagator GF(p) reproduces the correct continuum prop-
agator GF(p) ∝ (iγ μpμ + m)−1 and for massless fermions has a pole at p = 0.
The problem is, however, that GF(p) has not just one but 2d poles in the Brillouin
zone. Thus, the most naive discretization of the continuum theory leads to a lattice
discretization with 2d fermionic species.

15.3.3 Wilson Fermions

K. Wilson has been aware of the doubling problem since the starting years of lattice
field theories and suggested a modification of the action in order to get rid of the
doublers in the continuum limit [11]. He added a particular momentum-dependent
mass term—the Wilson term—to the naive action. This contribution gives a mass
to the doublers. In the continuum limit the doublers become infinitely heavy and
thus unobservable. Unfortunately at the same time the Wilson term breaks the chiral
symmetry of massless theories explicitly. In more detail, on a lattice with lattice
spacing a the modified new action reads

Sw = Snaive − r

2

∑

x

ψ̄xaΔ̂ψx =
∑

x

ψ̄xDwψx, (15.58)

where the Wilson parameter r in the modified Dirac operator

Dw = D̊ − ar

2
Δ̂ (15.59)

has values in the interval (0,1]. For positive r the Wilson term proportional to r

acts like a momentum-dependent mass such that in the massless limit Dw does not
anticommute with γ5. This means that the chiral symmetry is explicitly broken by
the Wilson term. In even dimensions Dw is γ5-hermitian. Without gauge fields it has
the eigenvalues

λp =
(
m+ ar

2
p̂2

)
± i|p̊|, (15.60)
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where we recall the definitions of p̂μ and p̊μ,

p̂μ = 2

a
sin

(
apμ

2

)
, p̊μ = 1

a
sin(apμ), pμ ∈ 2π

a

nμ

N
. (15.61)

In the following we often use the lattice spacing a as length scale. To localize the
eigenvalues of the Wilson operator in the complex plane we set tμ =− cos(pμ). In
the thermodynamic limit the lattice momentum has its values in the Brillouin zone
such that the tμ vary smoothly between −1 and 1 and define a d-dimensional cube.
The map {tμ}→ λ(t) defined by (15.60) maps the edges of this cube into d ellipses
with semi-major axes r and 1 and equidistant centers on the real axis,

(m+ r,0), (m+ 3r,0), . . . , (m+ 2d − 1,0). (15.62)

The ellipses are symmetrical to the real axis, touch each other on the real axis and
form the inner boundary of the spectrum of the Wilson operator, i.e. the set of eigen-
values of Dw. Next we observe that the momenta with equal coordinates tμ = t are
mapped to an ellipse with semi-major axes rd and d1/2 and center at (0,m+ rd).
This ellipse encloses the smaller ellipses and forms the outer boundary of the spec-
trum.

Thus the shaded area in Fig. 15.5 represents the spectrum of the 4-dimensional
Wilson operator in the thermodynamic limit. For r → 0 we recover the spectrum of
the naive Dirac operator D̊, i.e. the interval connecting m − id1/2 and m + id1/2.
In the massless limit the eigenvalues on the real axis at 0,2r,4r, . . . become the
annoying doublers of the naive Dirac operator when r → 0. In one dimension there
is only one inner ellipse and this ellipse coincides with the outer one. Hence all
eigenvalues are located on the ellipse centered at m + r with semi-major axes r

and 1. The value r = 1 corresponds to the backward derivative, the value r = −1
to the forward derivative and the value r = 0 to the antisymmetric derivative. In the
latter case all eigenvalues are located on the interval m+ i[−1,1]. In the limit r → 0
the eigenvalues m+ 2r and m are degenerate and we recover the species-doubling
problem.

To investigate the naive continuum limit of the Wilson operator we momentarily
re-install the lattice spacing a in the mass, eigenvalues and momenta. With decreas-
ing a the center of the outer ellipse at (m+ rd/a,0) moves away from the origin
and at the same time the semi-major axes rd/a and d1/2/a become large. The same
applies to the inner ellipses at

(m+ r/a,0), (m+ 3r/a,0), . . . ,
(
m+ (2d − 1)/a,0

)

with semi-major axes r/a and 1/a. In the continuum limit only the inner ellipse
next to the imaginary axis and the outer ellipse remain, and they converge to the
line m± i|p| defining the spectrum of the continuum operator. More accurately, the
dimensionful eigenvalues of Dw have the following expansion for small a:

λp =m+ ar

2
p̂2 ± i|p̊| =m± i|p| + 1

2
(ar)p2 +O

(
a2). (15.63)

Thus for a→ 0 we recover the spectrum of the free Dirac operator in the continuum.
For Wilson’s choice r = 1 the eigenvalues contain errors of order a, to be compared
with O(a2) for naive, staggered or SLAC fermions.
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Fig. 15.5 The complex eigenvalues of the free massive Wilson operator Dw in the thermodynamic
limit define the shaded region. Depicted is the spectrum for Wilson parameter r = 1 for which the
inner ellipses become circles

15.3.4 Staggered Fermions

Staggered fermions are obtained from naive fermions by redistributing the spinor
degrees of freedom across different lattice sites [12]. As a result, staggered fermions
describe a theory with much less doublers as naive fermions. In addition they are
relatively easy and fast to implement in simulations. To begin with, consider the
naive fermion action for spinor field with Δf = 2[d/2] components,

Snaive =
∑

x,μ

ψ̄xγ
μ(∂̊μψ)x +m

∑

x

ψ̄xψx. (15.64)

Now we perform the site-dependent similarity transformation

ψx = T (x)χx, ψ̄x = χ̄xT
†(x), T (x)= γ

x0
0 · · ·γ xd−1

d−1 , (15.65)

which diagonalizes the Dirac operator in spin space. With the help of

T †(x)γ μT (x ± eμ)= Γμ(x)1Δf
, Γμ(x)= (−1)x0+x1...+xμ−1 (15.66)

the action transforms into a sum of identical actions for the components χα of ψ ,

Snaive[ψ̄,ψ] =
Δf∑

α=1

Ss[χ̄α,χα], Ss[χ̄ , χ] =
∑

x

χ∗
x (Qsχ)x, (15.67)

where the (normal) matrix Qs acts on the one-component χ as follows,

(Qsχ)(x)=
∑

μ

Γμ(x)(∂̊μχ)x +mχx. (15.68)

To decrease the number of doublers we keep only one of the Δf identical terms and
this single term is just the action for staggered fermions. As a result we are deal-
ing with only one fermionic degree of freedom per lattice site. The site-dependent
phases Γμ(x) in Qs are remnants of the Dirac structure. With this clever trick, one
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Fig. 15.6 Dirac spinor fields
at x are constructed from the
one-component field χ on the
2d corners of the hypercubes
of the lattice specified by the
base point x and the
vectors fρ . The vector f0 is
the null vector

can reduce the 2d -fold degeneracy by a factor Δf without losing the original chi-
ral symmetry completely. The action for staggered fermions still admits an Abelian
U(1)×R+ symmetry. We show this by introducing the lattice function

ε(x)= (−1)x0+x1+···+xd−1 , (15.69)

which is 1 on the even sub-lattice and−1 on the odd sub-lattice. In the massless limit
the action is a sum of nearest-neighbor interaction terms and each term contains the
product of the field on an even site and the field on an odd site. Thus the reduced
action retains the U(1)×R+ part of the original symmetry:

χx → eigλ+αε(x)χx, χ∗
x → χ∗

x e−igλ+αε(x). (15.70)

Clearly the mass term χ∗
x χx acquires a factor e2αε(x) and is not invariant under

transformations with non-zero α. The symmetry (15.70) is enough to prevent the
occurrence of mass counterterms in the renormalization process: mbare = 0 implies
mren = 0. The R+ symmetry becomes a flavor non-singlet axial symmetry in the
continuum limit. Its possible spontaneous breaking produces a Goldstone boson for
any value of the lattice spacing.

By keeping just one of the Δf identical contributions to the action in (15.67) we
did not remove all of the 2d doublers from the theory. In even dimensions we are
still left with 2d/2 fermion species and in odd dimensions with 2(d+1)/2 species. For
simplicity we assume now that d is even. From the one-component field χ we can
reconstruct 2d/2 flavors of Dirac spinors on 2d disjoint sub-lattices {Λρ} with lattice
spacing 2a. The sub-lattices are defined by the 2d corners of a given elementary
hyper-cube on the lattice, see Fig. 15.6, as follows: Let {fρ} be the lattice vectors
pointing from a fixed corner x of the cube to all corners of the cube. In particular
f0 = 0. Then the field χρ on the sub-lattice Λρ is given by (we set a = 1)

χρ,x = χ2x+fρ , ρ = 0, . . . ,2d − 1. (15.71)
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Finally from the one-component fields {χρ} on the coarse lattices we may recon-
struct 2d/2 flavors of Dirac fields ψf , usually called ’tastes’ to distinguish them
from real flavors, with components ψf

α as follows:

ψ̂
f
α,x =N0

∑

ρ

(Tρ)αf χρ,x, α,f = 1, . . .2d/2, (15.72)

where the matrices Tρ are given by

Tρ = γ
ρ0
0 γ

ρ1
1 · · ·γ ρd−1

d−1 . (15.73)

The staggered fermion description has, however, some unpleasant features as well.
Flavor (or taste) symmetry is explicitly broken and hoped to be recovered only in
the continuum limit. In addition it is non-trivial to construct baryon operators with
definite quantum numbers. Finally, in order to obtain a theory with a single physical
flavor, one usually takes the fourth root of the fermionic determinant for staggered
fermions. This is correct in the free theory, but we do not know for sure whether this
non-local prescription makes sense non-perturbatively [20, 21].

15.4 Nielsen–Ninomiya Theorem

The lattice fermions discussed so far are all afflicted with certain problems. Naive
fermions and staggered fermions show fermion doubling, Wilson fermions break
chiral symmetry explicitly and staggered fermions break chiral symmetry partially.
In this section we shall shed light on the doubling problem in a more general fashion
with the help of the Nielsen–Ninomiya no-go theorem [22–24]. First, consider an
arbitrary bilinear action

S =
∑

x,y

ψ̄xM(x, y)ψy (15.74)

for spin-1/2 lattice fermions. Because of translational invariance, the Dirac operator
depends only on the difference x − y, i.e.

M(x,y)=D(x − y). (15.75)

We may now ask the question, why the discretization of fermions without doublers
and under conservation of chiral symmetry is as hard as it is? This question is an-
swered by the no-go theorem which says that the phenomenon of fermion doubling
occurs, provided that we only assume some general properties of the action as lo-
cality, hermiticity and translational invariance. Thereby, one finds an equal number
of left- and right-handed fermions. More precisely, the theorem states:

Theorem 15.1 (Nielsen–Nynomyia theorem) There exists no translational invari-
ant Dirac operator that fulfills the four following properties:

1. locality: D(x − y)� e−γ |x−y|,
2. continuum limit: lima→0 D̃(p)=∑

μ γ
μpμ,
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Fig. 15.7 The vector field
D̃μ(p) of the naive Dirac
operator in two dimensions.
The vector field has four
zeroes in the Brillouin zone.
Two zeros have winding
number 1 and two zeros have
winding number −1

3. no doublers: D̃(p) is invertible if p �= 0,
4. chirality: {γ5,D} = 0.

Locality implies the Fourier transform D̃ of D to be an analytic and periodic
function of the momenta pμ with period 2π/a. The second and third assumption
guarantee the correct continuum limit of D. References [22–24] give a proof of
the theorem by homotopy theory. Readers interested in a proof based on elegant
arguments from differential geometry should consult [25].

Proof We shall give a proof under the additional assumption [10]

D̃(p)=
∑

γ μD̃μ(p) with D̃μ(p) ∈R (15.76)

in momentum space, where the analytic functions D̃μ tend to pμ for small momenta.
Since the Brillouin zone shows the topology of a torus in d dimensions, D̃μ defines
a vector field D̃ on Td . We now assign an index to every zero pi of this vector field,
whereby we assume the number of zeros to be finite. According to a theorem by
HOPF and POINCARÉ, the sum of the indices of all zeros on a compact and oriented
manifold is equal to the Euler characteristic of the manifold,

∑

zeroespi

index
(
D̃(pi)

)= χ
(
Td

)
. (15.77)

Thereby the index of D̃ at a zero pi is equal to the degree of the induced map (the
winding number) from the boundary of a small ball centered at pi into R

d − 0. Fig-
ure 15.7 shows the vector field D̃(p) of the naive Dirac operator in two dimensions
in the first Brillouin zone. The vector field has index 1 at the zeros p = (0,0) and
(π,π) and index −1 at the zeros p = (0,π) and (π,0). The sum of the indices
vanishes in accordance with the fact that the Euler-characteristics of the torus van-
ishes, χ(Td) = 0. The figure shows clearly the doublers at momenta (π,0), (0,π)
and (π,π).
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Similarly, on the d-dimensional torus the zeros of D̃ occur in pairs with opposite
indices. To see this we expand D̃ around a zero p0 according to

D̃μ(p)=Aμν(p− p0)
ν + · · · , Aμν = ∂D̃μ

∂pν

∣∣∣∣
p0

.

The index of the vector field D̃ at its zero is equal to the sign of detA. For example,
if A is diagonal at the zero p0 = 0 then we have D̃μ(p)=Aμpμ+O(p2). If in four
dimensions A= diag(1,1,1,1), the index is equal to 1 and we find

ψ̄γ μD̃μ(p)ψ ≈ ψ̄γ μpμψ (15.78)

in the vicinity of the zero. Recall that the field ψ transforms under a chiral trans-
formation into exp(αγ5)ψ . In contrast, if A= diag(−1,1,1,1), the vector field has
index −1 and the Lagrangian density in the vicinity of the zero p0 = 0 has the form

ψ̄γ μD̃μ(p)ψ ≈ ψ̄γ5γ
0(γ μpμ

)
γ 0γ5ψ ≡ χ̄/pχ. (15.79)

Clearly χ = γ 0γ5ψ is to be interpreted as Dirac field of the doubler. Under chiral
transformations it transforms according to exp(−αγ5)χ such that the two fermion
species have opposite chirality. Every pole of the massless propagator corresponds
to a fermionic one-particle state. Thus, we conclude that a fermion of chirality +1
is always accompanied by a fermion of chirality −1. �

15.5 Ginsparg–Wilson Relation and Overlap Fermions

The Nielsen–Ninomiya no-go theorem makes clear that under certain conditions it
is impossible to find a chirally invariant Dirac operator without the appearance of
doublers. Similarly as with many other no-go theorems there is a way to bypass
it. The solutions of the doubler problem are based on a paper published in 1982
by GINSPARG and WILSON [26]. They asked thereby the question “. . . how can a
lattice theory serve to represent a continuum situation where the symmetry does not
suffer explicit breaking?”.

To begin with they considered a chirally invariant continuum theory which is
mapped to a lattice theory via a block spin transformation. In detail, the continuum
field φ on R

d is related via a block spin transformation to the lattice field ψ :

ψx =
∫

ddy α(x − y)φ(y), x ∈Λ. (15.80)

Thereby the exact form of the weight function α is irrelevant. Then Ginsparg and
Wilson analyzed the lattice action induced by the blocking transformation and how
much it deviates from a chirally invariant action. They discovered that operators
which solve the Ginsparg–Wilson relation

γ5D +Dγ5 = aDγ5D (15.81)
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yield optimal lattice operators. The lattice spacing a on the right hand side ensures
the proper continuum relation γ5D +Dγ5 = 0 on macroscopic scales (or for suffi-
ciently small a). By multiplying the relation (15.81) with S =D−1, we find

Sγ5 + γ5S = aγ5 or S(x, y)γ5 + γ5S(x, y)= aγ5δx,y . (15.82)

This means that chiral symmetry breaking as encoded in the propagator is ultralocal,
i.e. we obtain a chirally invariant propagator for all finite distances |x − y| > 0.
The property (15.82) is sufficient to preserve many relevant consequences of chiral
symmetry as e.g. the absence of an additive mass renormalization on the lattice.

The new developments have been triggered by the rediscovery of the Ginsparg–
Wilson relation by P. HASENFRATZ [34–36] and an explicit solution of the
Ginsparg–Wilson relation by H. NEUBERGER [40, 41]. M. LÜSCHER noticed that
the fermionic action

SF = ad
∑

x,y

ψ̄xD(x − y)ψy (15.83)

admits a continuous symmetry if the Dirac operator satisfies the Ginsparg–Wilson
relation [27]. The symmetry is interpreted as lattice version of the chiral symmetry
and reads

ψ →ψ(α) = eαγ5(1−aD/2)ψ and ψ̄ → ψ̄(α) = ψ̄eα(1−aD/2)γ5 . (15.84)

It is not difficult to show that the bilinear ψ̄Dψ is invariant:

d

dα

(
ψ̄(α)Dψ(α)

)= ψ̄(α)

{(
1− 1

2
aD

)
γ5D +Dγ5

(
1− 1

2
aD

)}
ψ(α)

(15.81)= 0.

However, in general the fermionic integration measure DψDψ̄ is not invariant un-
der the deformed chiral transformations (15.84). This fact ensures the occurrence of
the axial anomaly in presence of an external gauge field. Examples of lattice Dirac
operators that satisfy the Ginsparg–Wilson relations are:

1. domain wall fermions [28–30],
2. overlap operators [31–33, 40, 41],
3. fixed-point operators [34–36],
4. chirally improved operators [37–39].

In the following section we shall discuss the overlap operators introduced by Neu-
berger and Narayanan.

15.5.1 Overlap Fermions

An elegant solution of the Ginsparg–Wilson relation—the overlap operator—has
been constructed in the pioneering contributions [31–33, 40, 41]. The operator has
the form

Do = 1

a
(1+ V ), V = (

DwD
†
w

)−1/2
Dw, m < 0, (15.85)
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Fig. 15.8 The eigenvalues of
the overlap operator are
located on a Ginsparg–Wilson
circle that touches the
imaginary axis at the origin

where Dw denotes the Wilson operator. Dividing Dw by its modulus yields a uni-
tary operator V with its spectrum on the unit circle. Correspondingly, the overlap
operator has its eigenvalues on a circle that touches the imaginary axis at the origin,
as shown in Fig 15.8. Let us show that the overlap operator solves the Ginsparg
relation (15.81). In terms of the unitary operator V the left hand side reads

Doγ5 + γ5Do = 2

a
γ5 + 1

a
{γ5,V }. (15.86)

To rewrite the right hand side we use the following properties of the Wilson operator:
[
Dw,D

†
w

]= 0, γ5Dw =D†
wγ5,

[
DwD

†
w, γ5

]= 0, (15.87)

which imply V γ5V = γ5. Now the right hand side of the relation reads

aDoγ5Do = 1

a

(
γ5 + {γ5,V } + V γ5V

)= 2

a
γ5 + 1

a
{γ5,V } (15.88)

and it is equal to the left hand side in (15.86).

15.5.2 Locality

One disadvantage of the overlap operator is the appearance of the inverse of the
modulus (DwD

†
w)

1/2 of the Wilson operator. It is not evident that Do is a local
operator. In general, we distinguish between ultralocal operators, where D(x − y)

vanishes exactly if |x−y|> � and local operators, where D(x−y) decreases expo-
nentially as a function of the distance |x − y| on the lattice. In the continuum limit
local operators become exact local operators. By considering the spectral represen-
tation of the operator Do, we can analyze its locality behavior. Since

DwD
†
w =−Δ̊+

(
m− ar

2
Δ

)2

, (15.89)

the overlap operator in Fourier space may be written as

aD̃o(p)= 1+
{

iγ μp̊μ +m+ ar

2
p̂2

}{
p̊2 +

(
m+ ar

2
p̂2

)2}−1/2

. (15.90)
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The operator satisfies the first three conditions stated in the Nielsen–Ninomiya the-
orem. In particular, D̃o(p) is analytical and thus the operator Do(x − y) in position
space vanishes exponentially with increasing distances |x − y|. One assumption of
the Nielsen–Ninomiya theorem is not satisfied, since the chiral symmetry is real-
ized differently. The Ginsparg–Wilson relation allows for a very soft breaking of
the usual chiral symmetry such that the propagating states are effectively chiral and
all physical consequences of chiral symmetry are preserved.

To summarize: The overlap operator by Neuberger and Narayanan is local, shows
no fermion doubling and preserves (a deformed) chiral symmetry. However, since
the inversion of DwD

†
w in presence of gauge fields is quite time-consuming the over-

lap operator may not always be the best choice in simulations. In addition, if m= 0
there may appear zero-modes for non-vanishing gauge fields. Indeed, Ginsparg–
Wilson operators obey an exact Atiyah–Singer index theorem on the lattice and thus
there are zero-modes for topologically non-trivial background fields [42].

15.6 Yukawa Models on the Lattice

Yukawa models can be used to describe the strong nuclear force between nucleons
mediated by pions. The Yukawa interaction between fermions and scalar or pseudo-
scalar particles is also used in the Standard Model of particle physics to describe
the coupling between the Higgs field and massless quark and lepton fields. Through
spontaneous symmetry breaking, these fermions acquire a mass proportional to the
vacuum expectation value of the Higgs field. A Yukawa interaction has the form

yψ̄φψ or iyψ̄γ5φψ. (15.91)

If the fermions and (pseudo)scalars transform according to a non-trivial representa-
tion of some internal symmetry group then the trilinears must be invariant. The full
Euclidean action of the Yukawa model (with scalar field) reads

S =
∫

ddxL (φ,ψ), L = 1

2
(∇φ)2 + V (φ)+ ψ̄(/∂ +m)ψ + yψ̄φψ, (15.92)

where the potential V is invariant V (Ωφ) = V (φ). Suppose that the classical po-
tential V has a minimum at a constant field φ0 �= 0 which is not invariant under
the symmetry transformations. Then the classical vacuum configuration breaks the
internal symmetry. Expanding the action about φ0 in powers of χ = φ − φ0 we see
that the Yukawa interaction yields a term yφ0ψ̄ψ , which is just a mass term for the
fermions with fermion mass yφ0. The field χ is known as a Higgs field.

The same spontaneous symmetry breaking occurs in the quantized theory if the
scalar field acquires a non-zero vacuum expectation value, similar to a non-zero
magnetization in spin models. The lattice formulation enables us to study Yukawa
theories at strong Yukawa coupling y. On a lattice the expectation value of an ob-
servable is given by

〈
O(φ,ψ, ψ̄)

〉= 1

Z

∫
DφDψDψ̄O(φ,ψ, ψ̄)e−S[φ,ψ,ψ̄], (15.93)
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where S is some lattice version of the continuum action (15.92), e.g.

S = 1

2

∑

〈x,y〉
(φx − φy)

2 +
∑

x

V (φx)+
∑

x,y

ψ̄xD(x − y)ψy + y
∑

y

ψ̄xφxψx.

(15.94)

In the normalizing partition function we can integrate over the fermionic degrees of
freedom and obtain the determinant of D + yφ,

Z =
∫

DφDψDψ̄e−S[φ,ψ,ψ̄] =
∫

Dφ det(D + yφ)e−SB(φ), (15.95)

where SB denotes the bosonic part of the action, i.e. the ψ -independent part of S in
(15.94). For a real scalar field the operator D + yφ is γ5-Hermitian and hence has
real determinant. But the sign of the determinant may depend on the scalar field and
may give rise to the sign problem, in particular for a strong Yukawa coupling y.

15.6.1 Higgs Sector of Standard Model

The Higgs sector of the Standard Model of particle physics represents a 4d Yukawa
model. A careful analysis of this sector reveals that it defines a trivial theory. Triv-
iality refers to the behavior of the renormalized quartic coupling constant λr of the
scalar field in dependence on the cutoff parameter Λ. The cutoff has to be intro-
duced to regularize the theory. In a renormalizable theory the cutoff parameter can
be sent to infinity while holding all physical observables constant, making the phys-
ical predictions arising from such a theory eventually independent of the previously
introduced auxiliary parameter Λ, as desired. In a trivial theory, however, all renor-
malized coupling constants vanish as function of the cutoff parameter in the limit
Λ→∞, leading to a free, non-interacting theory when we try to remove the cutoff.
Thus the Higgs sector of the Standard Model can only be considered as an effective
theory connected with a non-removable cutoff parameter, which can be interpreted
as the maximal scale up to which the underlying effective theory can be trusted.
As a consequence the renormalized quartic coupling constant at a given cutoff Λ
is bounded from above according to λr(Λ) ≤ λup,r (Λ). This bound translates into
an upper bound mup,H (Λ) on the Higgs boson mass and this bound decreases with
increasing cutoff [43]. This remarkable fact tells us that once the Higgs boson has
been discovered and its physical mass mH measured, it would be possible to infer
the scale up to which the Standard Model can be valid at most from the comparison
of mH with its cutoff-dependent upper bound.

Early attempts to simulate the Higgs–Yukawa sector of the Standard Model had
problems with removing the fermion doublers from the spectrum while maintain-
ing chiral symmetry. More recently P. GERHOLD AND K. JANSEN employed the
overlap construction for the free Dirac operator D to simulate the chirally invari-
ant Higgs–Yukawa model. They obtained reliable upper (and lower) bounds on the
Higgs boson mass as a function of the cutoff parameter [44, 45]. For example, they
conclude that if the cutoff is at Λ = 1.5 TeV then the mass must be in the range
between 50 GeV and 650 GeV. On the other hand, for a Higgs boson mass of about
125 GeV the Standard Model can be valid up to very large cutoff scales.
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15.6.2 Supersymmetric Yukawa Models

Supersymmetry is an important ingredient of modern high energy physics beyond
the standard model. Since boson masses are protected by supersymmetry in such
theories with chiral fermions, it helps to reduce the hierarchy and fine-tuning prob-
lems drastically. However, as low energy physics is manifestly not supersymmetric,
this symmetry has to be broken at some energy scale. In the case of supersymmetric
field theories, a lattice formulation is hampered by the fact that the supersymmetry
algebra closes on the generator of infinitesimal translations which do not exist on
a discretized spacetime. A related fact is that lattice derivatives do not satisfy the
Leibniz rule implying that supersymmetric actions will in general not be invariant
under lattice supersymmetries. In generic lattice formulations there are no discrete
remnants of supersymmetry transformations on the lattice; in such theories, super-
symmetry in the continuum limit can only be recovered by appropriately fine-tuning
the bare couplings of all supersymmetry-breaking counterterms.

Particular simple supersymmetric Yukawa theories—Wess–Zumino models in
two dimensions—have been the subject of intensive analytic and numerical inves-
tigations [46–49]. The models with two supersymmetries contain one Dirac spinor
and two real scalar fields. The simpler models with just one supersymmetry contain
one real Majorana spinor field and one real scalar field and have the action

S =
∫

d2x
1

2

(
(∂μφ)

2 + ψ̄Dψ +P(φ)2
)
, D = /∂ +P ′(φ), (15.96)

with superpotential P . It is invariant under the supersymmetry transformations

δφ = ε̄ψ, δψ = (
/∂φ −P(φ)

)
ε. (15.97)

The constant and anticommuting Majorana spinor ε parametrizes the infinitesimal
supersymmetry transformation. For models with even superpotential the bosonic
part of the action is invariant under a reflection of the scalar field φ→−φ. Since

/∂ +P ′(−φ)= /∂ −P ′(φ)=−γ5
(
/∂ +P(φ)

)
γ5 (15.98)

the fermionic determinant det(D) is also invariant under a reflection of the scalar
field. In a series of papers various discretizations of models with one or two super-
symmetries have been studied and compared [17, 18, 50]. For the models based
on the SLAC derivative (introduced on p. 357) for both bosonic and fermionic
fields the fermionic operator is γ5-hermitian and the internal continuum symme-
tries are realized on the lattice. When one analyzes supersymmetric Ward identities
and the particle spectrum one sees that the models with SLAC derivative are supe-
rior to other discretizations and yield accurate results already on moderately sized
lattices.

Let us consider the model with one supersymmetry and even superpotential

P(φ)= μ2
0√
2λ

+
√
λ

2
φ2 �⇒ V (φ)≡ P(φ)2

2
= μ2

0

2
φ2 + λ

4
φ4 + const.

(15.99)
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Fig. 15.9 The divergent Feynman diagrams of the Wess–Zumino model in the Z2 symmetric
phase

Fig. 15.10 Dimensionless
prepotential P over inverse
coupling f−1. The shaded
region on the right is the Z2
symmetric phase where
SUSY is broken while the
small shaded region in the
middle gives the error bound
for the Z2 phase transition

It has vanishing Witten index and hence (at least) two degenerate ground states.
One expects that for fixed λ and μ2

0 ) 0 the system cannot tunnel between the two
ground states so that supersymmetry is unbroken. On the other hand, forμ2

0 > 0 both
ground state energies are lifted above zero and supersymmetry is broken [51, 52].
Two comments should be made at this point. Firstly the analysis of the divergent
diagrams in Fig. 15.9 shows that a logarithmic renormalization of the bare mass
parameter is necessary to cancel divergent contributions. The renormalization pro-
cedure amounts to a normal ordering of interaction terms with respect to a mass
parameter in the symmetric phase, for details see [50]. The dimensionless renormal-
ized coupling f = λ/μ2 distinguishes between the Z2-symmetric phase and broken
phase or the phase without supersymmetry and the phase with supersymmetry. Fig-
ure 15.10 shows the continuum-extrapolated expectation values of the superpoten-
tial. For strong couplings f the expectation value vanishes such that supersymmetry
is realized and the Z2-symmetry is broken. On the other hand, for weak couplings
we are in the Z2-symmetric phase and supersymmetry is dynamically broken. Sec-
ondly, the fermionic integral for a theory with Majorana fermions yields the Pfaffian
in place of the determinant. Up to a sign the Pfaffian of an antisymmetric matrix is
the square root of its determinant. Further properties of the Pfaffian are discussed
on p. 379.
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15.7 Coupling to Lattice Gauge Fields

Similarly as on p. 351 we consider a collection of Dirac fields with values in V ⊗
C
Δf . A global symmetry transformation ψ →Ωψ only acts in the vector space V

such that the Ω-invariance of the scalar product implies the invariance of the lattice
action

SF =
∑

x

ψ̄x(Dψ)x. (15.100)

Replacing lattice derivatives by covariant lattice derivatives one obtains an action
which is invariant under (local) gauge transformations ψx →Ω(x)ψx . For Wilson
fermions with Wilson parameter r the Dirac operator has the form

(Dw)xy = (m+ rd)δxy − 1

2

d−1∑

μ=0

((
r + γ μ

)
Uy,−μδx,y−eμ +

(
r − γ μ

)
Uy,μδx,y+eμ

)
.

(15.101)

A parametrization introduced by Wilson follows from rescaling

ψ → 1√
m+ rd

ψ, ψ̄ → ψ̄
1√

m+ rd
,

and yields the following form for the gauge invariant action:

Sw =
∑

x

ψ̄xψx − κ
∑

x,μ

(
ψ̄x−eμ

(
r + γ μ

)
Ux,−μψx + ψ̄x+eμ

(
r − γ μ

)
Ux,μψx

)
,

(15.102)

where κ = (2m+2rd)−1 is called hopping parameter. In quantum chromodynamics
(QCD) m is a diagonal matrix in flavor space and r is usually chosen flavor inde-
pendent, mostly r = 1. The action for Wilson fermions breaks the chiral symmetry
explicitly. Unfortunately, in lattice QCD this leads to a variety of complications.
In particular, recovering chiral symmetry in the continuum limit requires unnatural
fine-tuning of the bare fermion mass or, equivalently, the hopping parameter.

Gauge theories in particle physics contain both fermions and gauge bosons and
one is confronted with lattice path integrals of the form

Z =
∫ ∏

�

dU�

∏

x

dψx dψ̄x e−Sgauge(U)−SF(ψ,ψ̄) (15.103)

=
∫ ∏

�

dU� det
(
D[U ])e−Sgauge(U) (15.104)

=
∫ ∏

�

dU�sign(detD)(detM)1/2e−Sgauge(U), (15.105)

where M = D†D is hermitian and non-negative such that detM ≥ 0. For a γ5-
hermitian Dirac operator det(D) is real and sign(detD) ∈ {1,−1}. In more general
situations and in particular at finite baryon number densities the sign-function can
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be a complex phase, leading to the notorious fermion sign problem [53]. Standard
Monte Carlo techniques are only applicable if the measure in the path integral is
positive. Therefore we assume that either det(D) has a fixed sign or else simulate
with (detM)1/2 ≥ 0 and treat sign(detD) as an insertion into the path integral. In
the latter situation where detD changes sign the reweighing with sign(detD) is a
delicate issue and, in particular for strong coupling, may fail.

In simulations it is too expensive to calculate the determinant of D or M =D†D

for every gauge field configuration—the computational cost for det(M) grows with
the third power of the lattice volume. Thus one often introduces NPF complex
pseudofermion fields [54] and rewrites the partition function as

(detM)1/2 =
∫ ∏

p

Dφ†
pDφpe−SPF , SPF =

∑

p

(
φp,M

−qφq
)
, (15.106)

where qNPF = 1/2. The resulting path integral

Z =
∫ ∏

�

dU� DφDφ∗e−Sw(U)−SPF(U,φ,φ
†) (15.107)

can then be estimated with a HMC algorithm with force given by the gradient of the
non-local action Sgauge + SPF. In the (rational) HMC dynamics M−q is replaced by
a rational approximation according to

M−q ≈ α0 +
NR∑

r=1

αr

M + βr
, (15.108)

where the number of terms NR depends on the required accuracy of the rational ap-
proximation and the spectral range of M . The coefficients α and β can be calculated
with the Remez algorithm [55]. The force terms in the rHMC dynamics contain the
inverse of the matrices M + βr acting on a vector, and this mapping can be approx-
imated with the help of a (multi-mass) conjugate gradient solver. The efficiency of
the rHMC algorithm crucially depends on the lowest eigenvalues, i.e. the condition
number λmax/λmin of the hermitian operator M used in the rational approximation.

Observables of interest in particle physics are for example hadron masses, decay
widths, weak matrix elements or form factors and nowadays these quantities can be
estimated by lattice simulations on high performance computer clusters. Although
this is a very important field of research in particle physics we refrain from studying
this any further but refer the interested reader to the nice textbook of GATTRINGER

and C. LANG [4]. Instead we turn to gauge theories under extreme conditions.

15.7.1 Finite Temperature and Density

Finite temperatures are introduced via the boundary conditions in the Euclidean time
directions: bosonic fields must be periodic and fermionic fields must be antiperiodic
in Euclidean time with period β = 1/kbT . The antiperiodic boundary conditions for
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fermions originate from the anticommutation relations for fermion field operators.
Using this fact and the cyclicity of the trace we see that the thermal Green function
for the Euclidean field operator ψ̂(τ,x)= exp(τ Ĥ )ψ̂(0,x) exp(−τĤ ) satisfies

Gβ(τ,x;0,y)= 1

Z
tr
(
e−βĤ T ψ̂(τ,x)ψ̂(0,y)

)

=− 1

Z
tr
(
e−βĤ T ψ̂(τ,x)ψ̂(β,y)

)=−Gβ(τ,x, β,y),

where T is the time ordering. We conclude that fermion fields must be antiperiodic
in Euclidean time inside the path integral, cp. the problem on p. 380.

Dynamical fermions in a fundamental representation of the gauge group break
the center symmetry of the pure gauge theory (see the discussion on p. 326) explic-
itly and this affects the Polyakov loop. In full QCD one finds that the expectation
value of the Polyakov loop settles on the real positive axis. In the confined low
temperature phase it settles near the origin and in the high-temperature deconfined
phase near the trace of the center element 1. The Polyakov loop and Wilson loop
are no longer true order parameters.

In our theoretical world we may change the mass parameter m entering the Dirac
operator. If we let the parameter approach infinity, the quarks decouple and we are
in the so-called quenched situation without dynamical quarks. In the quenched ap-
proximation the SU(3) theory shows a first-order phase transition from the con-
fined to the deconfined phase. Lowering the quark masses the latent heat decreases
and the transition becomes weaker until the transition turns into a crossover. At
physical quark masses the confined and deconfined regions in parameter space
are analytically connected [56]. The lattice computation now agree on the posi-
tion of the crossover temperature for physical quark masses (mπ ≈ 140 MeV) at
Tc ≈ 170 MeV [57, 58]. There is clear evidence that the susceptibilities do not di-
verge.

Finite Baryonic Density

In extreme situations, such as heavy ion collisions or ultra-dense matter in neutron
stars, the baryon number density may exceed the density of atomic nuclei. In these
extreme situations we must switch to the partition function of the grand canonical
ensemble with quark chemical potential μ multiplying the quark number opera-
tor N̂q ,

Z(β,μ)= tr
(
e−β(Ĥ−μN̂q)

)
. (15.109)

Sometimes the baryon number operator N̂B = N̂q/3 and baryon chemical potential
μB = 3μ are used instead. The quark number density is the zero-component of the
conserved Noether vector current jμ = ψ̄γ μψ connected to the U(1)-invariance of
the theory. The corresponding Noether charge

N̂q =
∫

d3x ˆ̄ψγ 0ψ̂ (15.110)
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commutes with the Hamiltonian. We can treat the combination Ĥ−μN̂q as effective
Hamiltonian and directly write down the path integral by simply adding

−μQ= μ

∫
ddx ψ̄γ 0ψ (15.111)

to the Euclidean action. Thus at finite temperature and finite chemical potential the
fermionic part of the Euclidean continuum action takes the form

SF =
∫ β

0
dτ

∫
dd−1x ψ̄

(
/D +m+μγ 0)ψ. (15.112)

Note that the additional term containing μ is obtained by shifting an Abelian gauge
potential according to A0 → A0 − iμ. This partly explains why the partition func-
tion of an Abelian gauge theory in a finite box and subject to periodic boundary
conditions in the spatial directions does not depend on the chemical potential [59].
On the lattice one is tempted to add a term μ

∑
ψ̄xγ

0ψx to the lattice action. This
simplistic ansatz runs into problems with unphysical divergences of the energy den-
sity, though. Closer inspection of the continuum situation clarifies the problem. De-
termining the Noether current for the lattice action gives the current expressed by
nearest-neighbor terms. An easy way to find the correct expression is to recall that
the elementary parallel transporter changes under the shift A0 →A0 − iμ according
to

Ux,μ ≈ eiaAμ(x) → eμUx,μ. (15.113)

Thus the Wilson operator at bare fermion mass m and real chemical potential μ
reads

Dw,xy(μ)= (m+ rd)δxy

− 1

2

∑

ν

((
r + γ ν

)
e−μδ0,νUy,−νδx,y−eν +

(
r − γ ν

)
eμδν,0Uy,νδx,y+eν

)

(15.114)

and similarly for staggered, twisted mass or overlap fermions. The Euclidean action

S = Sgauge +
∑

x,y

ψ̄xDxy(μ)ψy (15.115)

enters the grand partition function for the theory with Nf flavors of Dirac fermions
at finite volume, temperature and chemical potential

Z(V,T ,μ)=
∮ ∏

�

dU�

(
detapD(μ)

)f
e−Sgauge(U). (15.116)

The index at the determinant indicates that it must be calculated with respect to an-
tiperiodic boundary conditions in the imaginary time direction. Unfortunately the
operators D(μ) have complex determinants for μ �= 0 and it is impossible to ap-
ply stochastic methods directly to estimate the thermodynamic potential or thermal
correlation functions at finite baryon density. Dealing with such complex determi-
nants in simulations is one of the most urgent problems in gauge theories at finite
densities. Various ways have been suggested to circumvent the problem:
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Fig. 15.11 Conjectured form of the phase diagram of QCD at finite temperature and baryon den-
sity. At high temperature we expect a deconfined quark–gluon plasma. At low temperatures and
low densities we are in the confined hadronic phase. If we increase the density at low temperature
then we move from the vacuum sector into the phase with nuclear matter. Increasing the density
even further we encounter a quark phase. At ultra-high densities we expect to find a color-fla-
vor-locked (CFL) phase with color-superconducting quark matter. There is a crossover between
the confined and deconfined phases at low densities

• One generates ensembles with μ= 0 and treats the μ-dependent part of exp(−S)
as insertion. This reweighing requires the exact evaluation of detD and works
well on small lattices [60].

• One performs a Taylor expansion around μ= 0 where the expansion coefficients
are estimated with the ensemble at μ= 0. This works well for small μ [61].

• For imaginary chemical potential the determinant becomes real and one can esti-
mate Z(V,T , iμ). The result is analytically continued to real chemical potential.
The analytic continuation of an approximation may be a bad approximation to the
analytic continuation and indeed the method only works well for small μ [62].

For larger chemical potentials the only results on the phase diagram at finite temper-
ature and finite density are obtained from functional methods or model calculations,
that crucially rely on truncations or model building [65, 66]. A different strategy is
to investigate QCD-like theories without a sign problem, having as much features in
common with QCD as possible. An example of such a theory is two-color QCD with
a real determinant at finite density. The phase diagram of the two-flavor model as a
function of temperature and net baryon density has been investigated in [63, 64]. Un-
fortunately the theory has no fermionic baryons and thus cannot support a ‘neutron
star’. A gauge theory without sign problem and with fermionic baryons is G2-QCD
which can be broken to real-life QCD with a scalar field in the seven-dimensional
fundamental representation [67, 68]. All irreducible representation of this excep-
tional groups can be chosen real and as a consequence the fermionic determinant at
finite baryon density is real and non-negative [69, 70]. The theory can be simulated
at finite temperature and finite baryon density and the resulting phase diagram looks
similar to the expected phase diagram for QCD, depicted in Fig. 15.11.



378 15 Fermions on a Lattice

Listing 15.1 Free fermionic propagator

1 function derinverse;
2 # inverse of partial + mass for left-derivative,
3 # antisymmetric derivative and SLAC derivative
4 # number of lattice sites N must be odd
5 mass=input("mass = ");
6 N=51;
7 x=[0:N-1];
8 zeroN2=zeros(1,N-2);
9 zeroN3=zeros(1,N-3);

10 xshort=1:N-1;
11 t=pi/N*(-1).^xshort./sin(pi*xshort/N);
12 # one-dimensional massive Dirac operators
13 dirac_left=toeplitz([mass+1,-1,zeroN2],[mass+1,zeroN2,-1]);
14 dirac_ant=toeplitz([mass,-.5,zeroN3,.5],[mass,.5,zeroN3,-.5]);
15 dirac_slac=toeplitz([0,t],[0,-t])+mass*toeplitz([1,zeroN2,0]);
16 # propagators of Dirac operators
17 clf;hold("off");
18 propagator=inverse(dirac_left);y=propagator(:,1);
19 plot(x,y,’x’,x,y(1)*exp(-mass*x),’-’);
20 legend(’left’);
21 propagator=inverse(dirac_ant);y=propagator(:,1);
22 hilfs=input("antisymmetric derivative: press enter ");
23 plot(x,y,’o’,x,y(1)*exp(-mass*x),’-’);
24 legend(’antisymmetric’);
25 propagator=inverse(dirac_slac);y=propagator(:,1);
26 hilfs=input("slac derivative: press enter ");
27 plot(x,y,’*’,x,y(4)*exp(mass*(3-x)),x,y(5)*exp(mass*(4-x)));
28 grid ("on");
29 legend(’Slac’);
30 # propagator of squared Slac operator
31 hilfs=input("slac-Dirac operator squared: press enter ");
32 clf;hold("off");
33 dirac_slacsquare=dirac_slac’*dirac_slac;
34 propagator_slacsquare=inverse(dirac_slacsquare);
35 y=propagator_slacsquare(:,1);
36 plot(x,y,’x’,x,y(2)*(exp(-mass*(x-1))+exp(mass*(x-N+1))),’-’);
37 legend(’Slac squared’);
38 endfunction;

15.8 Programs for Chap. 15

The octave-program derinverse in Listing 15.1 computes the two-point func-
tion (15.42) as a function of x. It is normalized to 1 at x = 1. One needs to in-
put the mass. The two-point function and the exponential fit exp(−mx) are plot-
ted.

By using the routine in Listing 15.2, one can plot the vector field of the naive
Dirac operator D̃μ(p) in the two-dimensional Brillouin zone.
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Listing 15.2 Vector field

1 function vectorfield;
2 # computes the vector field D_\mu(p) of the
3 # Dirac operator in momentum space
4 # number of lattice sites N must be odd
5 N=input("number of lattice points (10-20)= ");
6 p=linspace(-pi,pi,N);
7 [x,y]=meshgrid(p,p);
8 px=sin(x);
9 py=sin(y);

10 quiver(x,y,px,py,linelength=.6);
11 endfunction;

15.9 Problems

15.1 (Pfaffian) Let η1, . . . , η2N be an even number of anticommuting real Grass-
mann variables, {ηa, ηb} = 0. Prove that the Gaussian integral over such variables
yields the Pfaffian,

∫
dψ1 · · ·dψ2N e

1
2ψ

tMψ = 1

2NN !εa1b1...aNbNMa1b1 · · ·MaNbN = Pf(M).

(15.117)

By doubling the degrees of freedom prove the important identity

detM = (
Pf(M)

)2
.

Transform the Grassmann variables in (15.117) according to η→Rη and show

Pf
(
RtMR

)= det(R)Pf(M).

Prove that for an antisymmetric matrix M of dimensional 2N we have

Pf
(
Mt

)= (−1)N Pf(M).

Show, by using the relation between the Pfaffian and determinant, that

δ log det(M)= tr
(
M−1δM

) �⇒ δ log Pf(M)= 1

2
tr
(
M−1δM

)
.

Let us assume that the antisymmetric M is a tensor product of a symmetric matrix S
and an antisymmetric matrix A. By transforming both matrices into their normal
forms prove that

PfM = Pf(S ⊗A)= (detS)dimA · (PfA)dimS.

15.2 (Staggered fermions) Prove the identity (15.66) which was used to diagonalize
the naive Wilson operator to obtain the operator for staggered fermions.

15.3 (Supersymmetric actions) Show that the action (15.96) is left invariant by the
supersymmetry transformation (15.97), which contains a constant and anticommut-
ing Majorana parameter ε.



380 15 Fermions on a Lattice

15.4 (Fermions at finite temperature) We have seen that in the path integral for
fermions at finite temperature T one integrates over anticommuting fields which are
antiperiodic in Euclidean time, ψ(τ + βT ,x)=−ψ(τ,x). First show that formally
the path integral for free fermions with LF = ψ̄(/∂ +m)ψ can be rewritten as

Zβ =
∮

DψDψ̄e−SF ∝ detap(/∂ +m)= det1/2
ap

[(−Δ+m2)14
]

= det2ap

(−Δ+m2),

where the determinants are calculated on the space of antiperiodic functions. You
may exploit that /∂+m is γ5-hermitian. Now calculate detap(−Δ+m2) on this space
(for example, with the zeta-function regularization used in Sect. 5.2 to calculate
the determinant with respect to periodic boundary conditions) and show that the
resulting free energy density is that for free fermions in a box.

Appendix: The SLAC Derivative

We introduce the SLAC derivative on a one-dimensional periodic lattice with
equidistant sampling points

xk = x0 + k, k = 1, . . . ,N. (15.118)

The set of lattice functions xk →ψk ∈C, equipped with the scalar product

(φ,ψ)=
N∑

k=1

φ̄kψk, (15.119)

define a Hilbert space. If ψ is normalized to one we may interpret |ψk|2 as the
probability of finding the particle described by the wave function ψ at site xk . Then
the expectation value of the position operator is given by

〈x̂〉ψ = 〈ψ̄ |x̂|ψ〉 =
∑

xk|ψk|2 ≡
∑

kk′
ψ̄kxkk′ψk′ . (15.120)

As expected, the position operator x̂ is diagonal in real space such that its matrix el-
ements vanish if k �= k′. To introduce the SLAC derivative we switch to momentum
space with wave functions ψ̃(p�)≡ ψ̃� given by

ψ̃� = 1√
N

N∑

k=1

e−ip�xkψk, �= 1, . . . ,N. (15.121)

The inverse Fourier transformation reads

ψk = 1√
N

N∑

�=1

eip�xk ψ̃�, k = 1, . . . ,N. (15.122)
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We choose the {p�} symmetric with respect to the origin,

p� = 2π

N

(
�− N + 1

2

)
, (15.123)

and with this choice the number of sites must be odd to obtain periodic wave func-
tions and it must be even to obtain antiperiodic wave functions.

Now we seek a lattice momentum operator p̂ which is diagonal in momentum
space and has eigenvalues p�. This means that below the cutoff it has exactly the
same eigenvalues as the continuum operator on the interval. Similarly as in the con-
tinuum we interpret |ψ̃�|2 as probability for finding the eigenvalue p� of p̂. Then
the mean value of f (p̂) is

〈
f (p̂)

〉
ψ
=

∑

�

f (p�)|ψ̃�|2 = 1

N

∑

�

∑

kk′
eip�(xk−xk′ )f (p�)ψ̄kψk′

=
∑

kk′
ψ̄kf (p)kk′ψk′ , f (p)kk′ = 1

N

∑

�

eip�(xk−xk′ )f (p�).

(15.124)

Of course the operator f (p̂) is non-diagonal in position space and to find its matrix
elements f (p)kk′ we define the generating function

Z(x)= 1

N

N∑

�=1

eiNp�x = sin(πNx)

N sin(πx)
. (15.125)

The matrix elements are obtained by differentiation,

f (p)kk′ = f

(
1

iN

d

dx

)
Z(x)

∣∣∣∣
x=tkk′

, tkk′ = k − k′

N
. (15.126)

In particular we find

pkk = 0, pk �=k′ = π

iN
(−)k−k′ 1

sin(πtkk′)
, (15.127)

and these matrix elements define the SLAC derivative ∂slac = ip̂ in position space.
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Critical point, 238
Critical temperature

in MFA, 122
of 3d Potts models, 223
of Ising models, 128
of O(N) models, 199
of self-avoiding walk, 202

Crossover in QCD, 375
Cubic group, 321
Curie temperature, 101
Curie–Weiss law, 126
Curl on lattice, 216
Curvature, 303
Cutoff in RG flow, 258

D
Decimation procedure, 232
Density matrix, 109
Detailed balance, 52
Determinant of operator, 79
Dimensional transmutation, 251
Dirac equation, 349
Divergence on lattice, 216
Domain wall fermions, 367
Doubling problem, 359, 360
Dual coupling, 153
Dual lattice, 92
Dual plaquette, 217
Duality

for 2d Ising model, 210
for 2d Pottsmodels, 216
for 2d Potts model, 227
for 3d Ising model, 217
for gauge theories, 220
for Potts chain, 227

E
Effective action, 258

scale dependent, 257
Effective potential, 84, 85

in MFA, 140
Elitzur’s theorem, 313
Energy density

for free scalars, 83
inner, 241

Energy-entropy argument, 209
Energy-gap, 17
Entropy, 111
Euclidean covariance, 77
Euclidean field operators, 76
Euclidean path integral, 11
Expectation values, 39

in spin models, 109
thermal, 77

External source, 84
Extrapolation to critical point, 180

F
Fenchel–Young inequality, 87
Fermion doubling, 359
Fermion fields, 349
Fermions

naive, on the lattice, 358
overlap, 367
staggered, 362
Wilson, 360

Fermions at finite temperature, 374
Feynman–Kac formula, 9, 10
Field renormalization, 249
Field strength, 297
Finite group, 343
Finite temperature gauge theory, 325
Fixed point, 236, 238

of RG transformation, 234, 239
of scalar field theory, 270

Fixed-point operators, 367
Flory exponents, 202
Flow equation, 257
Fourier acceleration, 64
Fradkin–Shenker theorem, 312
Free energy, 16, 110

from high temperature expansion, 83
of scalar particles, 81
of spinless particles, 79
variational characterization, 111

Free energy density, 110
for Ising chain, 151
of scalar field, 78

Fugacity, 165
Functional determinant, 79
Functional renormalization group, 257
Functional renormalization group equation

for anharmonic oscillator, 263
for scalar field theory, 269

G
G2-QCD, 328
Gamma matrices

Euclidean, 350
Gap equation, 121, 138
Gauge fixing, 219
Gauge theories, 295

at finite temperature, 325
Euclidean, 301
in continuum, 296

Gauge theory
at finite density, 375
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Gauge transformations, 219
in Z2 lattice gauge theory, 219

Gaussian integral, 92
for fermions, 353

Gaussian integration method, 26
Gaussian model, 108
Generating function

for binomial distribution, 33
for moments, 19

Ginibre’s inequality, 162
Ginsparg–Wilson relation, 366
GKS inequality I, 161
Glueball, 320
Grassmann integration, 352
Grassmann variables, 351, 352
Green function

of forward derivative, 356
Green’s function

random walk representation, 93

H
Haar measure

of general Lie group, 344
of SU(2), 344
of U(1), 343

Hamiltonian, 7
from transfer matrix, 153

Heat equation, 12
Heat kernel, 81

on cylinder, 82
Heisenberg equation, 7
Heisenberg model, classical, 108
Heisenberg picture, 7
Higgs boson mass bounds, 370
Higgs models, 302
Higgs sector, 75
Higgs sector of Standard Model, 370
High-dimensional integrals, 25
High-temperature expansion, 173

Ising chain, 174
of 2d Ising model, 176
of 3d Ising model, 181
of Ising chain, 174
of Ising models, 175
of sigma models, 191

Hilbert space, 7
Hit-or-miss Monte Carlo method, 32
HMC-algorithm, 62

for oscillator, 65
Hopping parameter, 305, 373

I
Imaginary-time path integral, 14
Importance sampling, 36

Inner energy, 110
of 2d Ising model, 103
of Ising chain, 151

Integrator
fourth-order, 70
leapfrog, 64
symplectic, 66

Interpolating polynomial, 27
Invariant measure, 342
Invariant tensors

contractions, 193
totally symmetric, 193

Irrelevant perturbation, 240
Ising chain, 150

at high temperatures, 174
at low temperatures, 173
partition function, 175
simulation, 114
zeros of partition function, 166

Ising model, 101
high-temperature expansion, 177
high-temperature expansion for χ , 177
low-temperature expansion, 185
Tc in two dimensions, 212

J
Jensen inequality, 65

K
Kernel of block spin transformation, 244
Klein–Gordon equation, 76
Kosterlitz–Thouless phase transition, 107
Kramers–Wannier duality, 210

L
Lagrange polynomials, 26
Lagrangian density

of Abelian gauge theory, 296
of scalar electrodynamics, 298

Laplacian on the lattice, 359
Large N limit, 277
Lattice

dual, 211
hyper-cubic, 89

Lattice action
of fermions, 358
of gauge fields, 304
of Yang–Mills–Higgs theory, 305
of Yukawa model, 370

Lattice derivative
antisymmetric, 356
backward, 91, 355
forward, 91, 355
naive, 356
SLAC, 357



388 Index

Lattice gas, 165
Lattice gauge theory, 295

in two dimensions, 337
two-dimensional, 333

Lattice regularization
of scalar fields, 89

Law of large numbers, 35, 40
Leapfrog integration, 64
Lee–Yang edge singularity, 167
Lee–Yang theorem, 164, 168
Legendre transformation, 86
Leibniz rule on the lattice, 95
Lie’s theorem, 9
Line of constant physics, 250
Linear O(N) models, 274
Local operator, 368
Low-temperature expansion, 173

of 3d Ising model, 189
of Ising chain, 174

Lüscher term, 318

M
Magnetization, 110, 126, 241

from low-temperature expansion, 186
in MFA, 126
of Ising chain, 151

Majority rule, 245
Marginal perturbation, 240
Markov chain, 47
Markov process, 47
Markov’s theorem, 40
Matsubara frequencies, 79
Maxwell construction, 140
Mean field approximation, 119

for φ4 theory, 140
for φ6 theory, 140
for lattice gauge theories, 308
for O(N) model, 142

Mean value, 39
Mellin transformation, 81
Mermin–Wagner theorem, 144
Metropolis algorithm, 36
Migdal recursion formula, 338
Milne’s rule, 28
Molecular dynamics, 62
Monte Carlo iteration, 54
Monte Carlo renormalization, 243

N
Newton–Cotes method, 26
Nielsen–Ninomiya theorem, 364

O
Observables

in pure gauge theories, 316
O(N) model, 107
Order parameter, 126
Ornstein–Zernike theory, 136
Oscillator

anharmonic, 57
harmonic, 19

Osterwalder–Seiler theorem, 312
Osterwalder–Schrader axioms, 77
Overlap fermions, 367
Overlap operator, 367

P
Pade approximant, 189
Parallel transport, 300

composite rule, 300
elementary, 302

Partition function, 15, 109
Ising chain, 150, 175
of Potts chain, 155
of scalar field, 78

Path ordering, 299, 300
Peierls’ argument, 205
Peierls’ contour, 206
Peierls’ inequality, 206
Percus’ inequality, 163
Perimeter law, 318
Perron–Frobenius theorem, 155
Peter–Weyl theorem, 346
Pfaffian, 353, 379
Phase diagram

of G2-QCD, 328
of Higgs model, 311

Phase space, 7
extended, 62

Phase transitions, 101
Plaquette variable, 304
Poisson bracket, 7
Polyakov loop, 306, 326, 334
Polymers, 199
Polynomial interpolations, 26
Potts chain, 154
Potts model, 105

planar, 106, 107
vector, 107

Probability space, 38
Propagator

Euclidean, 79
for imaginary time, 17
of free particle, 9
of scalar field, 91

Pseudofermions, 374
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R
Random variable, 39

independent, 39
Rectangle method, 28
Reduced temperature, 125
Reflection positivity, 77
Relevant perturbation, 240
Renormalization group, 229

exact flow in large N limit, 279
flow for effective action, 262
flow for Schwinger functional, 262
map, 237
transformation for 2d Ising model, 234
transformation for Ising chain, 231

Representations of group, 346
RG transformation

linearized, 239
Riemann integral, 26
Riemann sum, 26
Riemann zeta function, 82
Rotor model, 108

S
Scalar field, 75
Scale dependent effective potential

for anharmonic oscillator, 263
Scaling

fields, 241
laws, 241
of free energy density, 240
operators, 241
relations, 242

Schrödinger equation, 8
Schrödinger picture, 8
Schwinger functional, 18, 84, 258

scale dependent, 257
thermal, 84

Schwinger functions, 14
for scalar field, 77, 78

Self-avoiding random walk, 199
critical temperature, 202

Self-consistency equation, 121
Sigma models

high-temperature expansion, 191
linear, 85
nonlinear, 85
order β6 contribution, 195

Sign problem, 370, 374
Simpson’s rule, 28
Specific heat

in MFA, 127
of 2d Ising model, 103

Spin models, 149
continuous, 101

discrete, 101
partition function, 109

Spinor fields
on the lattice, 354

Spontaneous magnetization, 110
in Ising model, 187

Square root law, 40
Staggered fermions, 362
Staple, 221
Statistical fluctuations, 58
Stochastic matrix, 47

attractive, 50
Stochastic vector, 48
Stokes’ theorem, 300
String breaking, 317
String tension, 317
Strong coupling expansion

for gauge theories, 319
Supersymmetric Yukawa model, 371
Supersymmetry, 371
Susceptibility, 241

in the MFA, 125
Symplectic integrator, 65, 66

T
Target space of spin models, 90
Taste, 364
Test probability, 53
Thermal expectation values, 77
Thermal propagator, 79
Thermodynamic limit, 104
3-state system, 55
3/8-rule, 28
Time-ordered product

of field operators, 76
Toeplitz matrix, 19
Transfer matrix, 149

general method, 157
Ising chain, 150
of 1d-Potts models, 154
of Ising chain, 150

Trapezoidal rule, 28
Triviality, 75
Trotter product formula, 9
Two-point function

connected, 17
of dual Ising model, 214

2-state-system, 54

U
U(1) model, 107
Ultralocal operator, 368
Unitary gauge, 305
Universality, 242
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V
Vacuum expectation values, 13, 76
Vacuum–vacuum amplitude, 76
Van Hove theorem, 152
Variational principle, 76
Verlet algorithm, 70
Virial theorem, 58

W
Wave function renormalization, 282
Wess–Zumino model, 371
Wetterich equation, 257, 262
Wick rotation, 11
Wiener measure, 11
Wightman functions, 13, 77
Wilson action, 304
Wilson fermions, 360

coupled to gauge fields, 373
Wilson loop, 219, 301, 316

Wilson loop variables, 219
Wilson parameter, 360
Wilson–Polchinski flow equation, 257

X
XY-model, 108

Y
Yang–Mills–Higgs theory

on a lattice, 305
Yukawa coupling, 369
Yukawa model

supersymmetric, 371
Yukawa models on a lattice, 369

Z
Zn gauge models, 220
Zeta function, 80
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